当前位置: 首页 > news >正文

做软件的声称发现网站漏洞多用户商城系统开发多少钱

做软件的声称发现网站漏洞,多用户商城系统开发多少钱,沈阳开发网站公司,wordpress固定链接后500错误在统计分析中交互作用是指某因素的作用随其他因素水平变化而变化,两因素共同作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。相互作用的评估是尺度相关的:乘法或加法。乘法尺度上的相互作用意味着两次暴露的综合效应大于(…

在统计分析中交互作用是指某因素的作用随其他因素水平变化而变化,两因素共同作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。相互作用的评估是尺度相关的:乘法或加法。乘法尺度上的相互作用意味着两次暴露的综合效应大于(或小于)两次暴露单独效应的乘积。加性尺度上的相互作用意味着两次暴露的综合效应大于(或小于)两次暴露单独效应的总和。
目前在大量文章中只报道了乘法交互效应,而加法交互效应报道得较少。有文献表明,单单只用乘法交互效应低估了疾病协同的危险性,从而低估了发病率。
在这里插入图片描述
Rothman指出 logistic 或 Cox 回归模型中乘积项无统计学意义,
并不表示两因素无相加交互作用,也不表示无生物学交互作用,并从理论上探讨了用于评价因素间是否有区别于相乘交互作用的相加交互作用,以及三个评价指标:相对超危险度比(the relative excess risk due tointeraction,RERI)、归因比(the attributable proportion
due to interaction,AP)和交互作用指数(the synergy in-dex,SI)的构造和计算方法。

以最简单的两因素两水平为例。假设两暴露因子分别为 A、B。1 表示因素存在,0 表示因素不存在,因变量为疾病的发生与否。logistic 回归模型得到的 OR 值,作为相对危险度(RR)的估计值,OR _A0B0 表示 A、B 都不存在时发病的 OR 值,分析时作为参照组;OR _A1B0 表示仅 A 存在、B 不存在时发病的 OR 值;OR _A0B1 表示 A不存在、仅 B 存在时发病的 OR 值;OR _A1B1 表示 A、B共同存在时发病的 OR 值。
Rothman 用于评价相加交互作用的三个指标公式如下:
RERI= OR _A1B1 - OR _A0B1 - OR _A1B0 +1;
AP = RERI / OR _A1B1 ;
SI= (OR _A1B1 - 1) / [(OR _A0B1 - 1) + (OR _A1B0 - 1)]

由此看出:RERI是A和B同时暴露的发病率减去单独A和B的危险度,得出的一个超出部分的危险度。AP就是超出部分的危险度占总危险度的比例。SI就是A和B同时暴露的发病率增加的危险度除以单独A和B的发病增加的危险度。(体会一下)。

下面咱们使用interactionR包进行分析,先导入R包和数据

library(interactionR)
bc<-read.csv("E:/r/test/jiaohu1.csv",sep=',',header=TRUE)

在这里插入图片描述
这是个很简单的数据,oc是结局变量,alc 和 smk是暴露因素。
先建立模型

model.glm <- glm(oc ~ alc * smk,family = binomial(link = "logit"),data = OCdata)

代码很简单,就一句代码

out <- interactionR(model.glm, exposure_names = c("alc", "smk"), ci.type = "mover", ci.level = 0.95, em = F, recode = F)

interactionR包可以直接生成一个做好的word表格,连做表格都帮你省了。

interactionR_table(out)

在这里插入图片描述
这个表格可以在RStudio 的目录(或者你设定的目录)下找到

在这里插入图片描述
怎么看这个表格呢,根据发病的方法比较OR,见下图

在这里插入图片描述
如果将“ci类型”设置为“mover,就会选择variance recovery这种方法

out <-interactionR(model.glm,exposure_names = c("alc", "smk"),ci.type = "mover", ci.level = 0.95,em = FALSE, recode = FALSE)interactionR_table(out)

在这里插入图片描述
两个方法结果都差不多哈。下面演示一个包含三个二元变量数据,outcome 是结局变量, exp1 和exp2是暴露变量

d<-read.csv("E:/r/test/jiaohu2.csv",sep=',',header=TRUE)

在这里插入图片描述
方法基本一样,就是CI这里取的是"delta",recode = TRUE。

model.prev <- glm(outcome ~ exp1 * exp2, family = binomial(link = "logit"), data = d)out1<-interactionR(model.prev,exposure_names = c("exp1", "exp2"),ci.type = "delta", ci.level = 0.95,em = FALSE, recode = TRUE
)interactionR_table(out1)

在这里插入图片描述
我们看到多了个Effect of exp1 within the strata of exp2这个指标,大概的意思是exp1在exp2这个分层的效应。具体详情请参看:Zou GY. On the Estimation of Additive Interaction by Use of the Four-by-two Table and Beyond. American Journal of Epidemiology 2008; 168:212-24.这篇文章。

OK,本期文章结束,公众号回复:相加交互作用数据,可以获得文中两个数据,想进一步了解看下参考文献也是很有帮助的。

参考文献:

  1. Zou GY. On the Estimation of Additive Interaction by Use of the Four-by-two Table and Beyond. American Journal of Epidemiology 2008; 168:212-24.
  2. [1]许敏锐,强德仁,周义红,等.应用R软件进行logistic回归模型的交互作用分析[J].中国卫生统计, 2017, 34(4):4.DOI:CNKI:SUN:ZGWT.0.2017-04-043.
  3. Rothman K, Greenland S (1998). Modern Epidemiology. Lippincott - Raven Philadelphia, USA.
  4. Knol, M.J., VanderWeele, T.J., Groenwold, R.H.H. et al. Estimating measures of interaction on an additive scale for preventive exposures. Eur J Epidemiol 26, 433–438 (2011). https://doi.org/10.1007/s10654-011-9554-9
http://www.yayakq.cn/news/925631/

相关文章:

  • 怎么样制作网站个人房产备案查询网上查询
  • 徐城乡建设局网站saas智能营销云平台
  • 建设网站的网站是什么个人网站建设平台
  • 昆明 网站搭建重庆网站推广免费软件
  • 网站底部备案号网站搜索功能怎么实现
  • 黄埔定制型网站建设精准营销模式
  • 网站开发毕业设计报告沈阳建网站电商
  • 黑龙江省建设教育网站查询优化 英语
  • 网站建设仟金手指专业15阿里云 域名 做网站
  • 景点旅游网站开发与设计wordpress查询页面id
  • 网站后台域名登陆软件广州网站设计公司兴田德润在哪儿
  • 用什么软件做网站最简单 最方便android电影网站开发
  • xp系统建设网站站长工具seo综合查询可以访问
  • 邢台贴吧打黑最新消息武安百度seo
  • 贵州省建设职业技术学院网站海口网站运营托管费用
  • 重庆做网站建设哪家好国外手机网站模板
  • 厦门商城网站开发蛙蛙写作网站
  • 网站建设 架构wordpress安装主题需要主机名
  • 不限流量网站空间企业铭做网站
  • 四川平台网站建设设计阿里云可以做电影网站吗
  • 软件公司网站 手机版建网站的客户
  • 做一个这样的网站应该报价多少一件代发48个货源网站
  • 个人网站可以做产品众筹吗设计兼职网站有哪些
  • 汉鼎网站建设做策划的都上哪些网站搜索资料间
  • 做网站外贸怎么找客户信用信息公示网官网
  • 深圳商业网站建设去哪家出名的网站建设软件
  • 网站维护中一般要多长时间有了源码怎么做软件
  • 免费建商城网站wordpress 鼠标特效
  • 茶叶怎么做网站销售沛县专业做网站
  • 照片做视频模板下载网站个人网站制作在线