当前位置: 首页 > news >正文

协和医院网站建设目标wap网站代码

协和医院网站建设目标,wap网站代码,在线网页代理太太猫,石家庄市建设工程信息网引言张量的基础知识 张量的概念张量的属性张量的创建张量的操作 基本运算索引和切片形状变换自动微分 基本概念停止梯度传播张量的设备管理 检查和移动张量CUDA 张量高级操作 张量的视图广播机制分块和拼接张量的复制内存优化和管理 稀疏张量内存释放应用实例 线性回归神经网络…

  1. 引言
  2. 张量的基础知识
    1. 张量的概念
    2. 张量的属性
    3. 张量的创建
  3. 张量的操作
    1. 基本运算
    2. 索引和切片
    3. 形状变换
  4. 自动微分
    1. 基本概念
    2. 停止梯度传播
  5. 张量的设备管理
    1. 检查和移动张量
    2. CUDA 张量
  6. 高级操作
    1. 张量的视图
    2. 广播机制
    3. 分块和拼接
    4. 张量的复制
  7. 内存优化和管理
    1. 稀疏张量
    2. 内存释放
  8. 应用实例
    1. 线性回归
    2. 神经网络基础
  9. 总结

1. 引言

在机器学习和深度学习中,张量(Tensor)是核心的数据结构。了解和掌握张量的操作是学习 PyTorch 和构建神经网络模型的必要基础。张量可以表示从标量到高维数组的数据结构,它在 PyTorch 的计算图中扮演着基础角色。本指南旨在全面介绍 PyTorch 中张量的相关知识,帮助读者从基础打好深度学习的基础。

2. 张量的基础知识

1. 张量的概念

张量是一个数组的通用化,可以表示标量(0维)、向量(1维)、矩阵(2维)及更高维的数组。通俗来说,张量是一种多维数据结构,其本质上是一个多维数组。

2. 张量的属性

张量有多个重要属性,用来描述其数据和结构:

  • 形状(shape):描述张量的维度结构,例如 (2, 3) 表示一个包含 2 行 3 列的矩阵。
  • 数据类型(dtype):指定张量中元素的类型,例如 torch.float32torch.int64 等。
  • 设备(device):指示张量存储的设备,可以是 CPU 或 GPU。
  • 步幅(stride):步幅表示连续两个元素在各个维度上的步进距离。
import torchtensor = torch.tensor([[1., 2., 3.], [4., 5., 6.]])print(tensor.shape)    # torch.Size([2, 3])
print(tensor.dtype)    # torch.float32
print(tensor.device)   # cpu
print(tensor.stride()) # (3, 1)

3. 张量的创建

可以通过多种方式创建张量,包括从已有数据创建、使用随机数生成和从其他张量创建。

# 从数据创建
scalar = torch.tensor(5.0)          # 标量
vector = torch.tensor([1.0, 2.0, 3.0])  # 向量
matrix = torch.tensor([[1.0, 2.0], [3.0, 4.0]])  # 矩阵# 使用随机数创建
rand_tensor = torch.rand(2, 3)     # 均匀分布
randn_tensor = torch.randn(2, 3)   # 标准正态分布# 从其他张量创建
zeros_tensor = torch.zeros_like(matrix)  # 创建与 matrix 形状相同的全零张量

3. 张量的操作

1. 基本运算

张量支持基本的算术运算,包括加、减、乘、除。

a = torch.tensor([1.0, 2.0, 3.0])
b = torch.tensor([4.0, 5.0, 6.0])# 加法
c = a + b# 减法
d = a - b# 乘法
e = a * b# 除法
f = a / b# 点积
dot_prod = torch.dot(a, b)  # 32.0# 矩阵乘法
matrix1 = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
matrix2 = torch.tensor([[5.0, 6.0], [7.0, 8.0]])
matrix_mul = torch.mm(matrix1, matrix2)  # [[19.0, 22.0], [43.0, 50.0]]

2. 索引和切片

张量支持多种索引和切片操作,类似于 NumPy。

tensor = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])# 索引
element = tensor[1, 2]  # 6.0# 切片
subset = tensor[:, 1]  # tensor([2.0, 5.0])

3. 形状变换

在不复制数据的情况下,PyTorch 支持多种形状变换操作。

# 重塑
reshaped = tensor.view(3, 2)  # tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])# 转置
transposed = tensor.t()       # tensor([[1.0, 4.0], [2.0, 5.0], [3.0, 6.0]])# 增加或减少维度
unsqueezed = tensor.unsqueeze(0)  # 增加第0维
squeezed = tensor.squeeze()       # 去除所有维度为1的维度

4. 自动微分

PyTorch 提供强大的自动微分功能,称为Autograd。它可以自动计算张量的梯度,适用于优化和训练神经网络。

1. 基本概念

张量可以设置 requires_grad=True 以启用自动微分。计算张量的梯度使用 backward() 方法。

x = torch.tensor([2.0, 3.0], requires_grad=True)
y = x[0] ** 2 + x[1] ** 3
y.backward()
print(x.grad)  # tensor([ 4.0, 27.0])

2. 停止梯度传播

在某些情况下,比如模型评估或推理时,需要停止梯度传播以提高性能并节省内存。

with torch.no_grad():y = x[0] ** 2 + x[1] ** 3# 使用 detach() 方法创建一个新的张量,该张量与原始张量共享数据,但不进行梯度追踪
detached_tensor = x.detach()

5. 张量的设备管理

1. 检查和移动张量

张量可以在 CPU 或 GPU 上进行计算。PyTorch 提供了简单的方法来检查和移动张量到不同的设备。

tensor = torch.tensor([1.0, 2.0, 3.0])# 检查是否有可用的 GPU
if torch.cuda.is_available():tensor = tensor.to('cuda')print(tensor.device)  # cuda:0# 将张量移动回 CPU
tensor = tensor.to('cpu')
print(tensor.device)  # cpu

2. CUDA 张量

使用 CUDA 张量可以显著提高计算速度,特别是在深度学习中。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tensor = torch.tensor([1.0, 2.0, 3.0], device=device)

6. 高级操作

1. 张量的视图

视图允许我们在不复制数据的情况下,改变张量的形状。

original_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
view_tensor = original_tensor.view(6)  # tensor([1, 2, 3, 4, 5, 6])# 修改视图
view_tensor[0] = 10
print(original_tensor)  # tensor([[10,  2,  3], [ 4,  5,  6]])

2. 广播机制

广播机制使得不同形状的张量能够进行相同大小的运算。

a = torch.tensor([1, 2, 3])
b = torch.tensor([[1], [2], [3]])
result = a + b
# result: tensor([[2, 3, 4],
#                 [3, 4, 5],
#                 [4, 5, 6]])

3. 分块和拼接

可以使用 split() 和 cat() 等函数进行分块和拼接。

tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])# 分割张量
split_tensors = torch.split(tensor, split_size_or_sections=2, dim=1)# 拼接张量
tensor_a = torch.tensor([[1, 2], [3, 4]])
tensor_b = torch.tensor([[5, 6], [7, 8]])
concat_tensor = torch.cat((tensor_a, tensor_b), dim=1)

4. 张量的复制

用于创建独立副本,clone() 和 detach() 是常用方法。

tensor = torch.tensor([1, 2, 3], requires_grad=True)
cloned_tensor = tensor.clone()
detached_tensor = tensor.detach()

7. 内存优化和管理

1. 稀疏张量

对于稀疏矩阵和张量,PyTorch 提供了稀疏张量表示,以便节省内存和计算资源。

indices = torch.tensor([[0, 1, 1], [2, 0, 2]])
values = torch.tensor([3, 4, 5], dtype=torch.float32)
sparse_tensor = torch.sparse_coo_tensor(indices, values, [2, 3])
print(sparse_tensor)

2. 内存释放

为了在训练和评估期间节省内存,可以释放不再需要的张量。

# 使用 del 语句手动删除对象
del tensor# 清空 GPU 切实可行的张量以释放内存
torch.cuda.empty_cache()

8. 应用实例

通过实际应用实例,可以更好地理解和掌握 PyTorch 张量的使用方式。

1. 线性回归

利用 PyTorch 张量实现简单的线性回归模型。

# 数据集
x_train = torch.tensor([[1.0], [2.0], [3.0]])
y_train = torch.tensor([[2.0], [4.0], [6.0]])# 初始化参数
w = torch.randn(1, requires_grad=True)
b = torch.randn(1, requires_grad=True)def model(x):return w * x + b# 损失函数
def loss_fn(y_pred, y):return ((y_pred - y) ** 2).mean()# 训练模型
learning_rate = 0.01
for epoch in range(1000):y_pred = model(x_train)loss = loss_fn(y_pred, y_train)loss.backward()with torch.no_grad():w -= learning_rate * w.gradb -= learning_rate * b.gradw.grad.zero_()b.grad.zero_()print(f'w: {w}, b: {b}')

2. 神经网络基础

张量在神经网络中的应用,是构建复杂模型的基础。

import torch.nn as nn# 简单的神经网络
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(1, 10)self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 1)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return outmodel = SimpleNN()
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 训练模型
for epoch in range(1000):y_pred = model(x_train)loss = criterion(y_pred, y_train)optimizer.zero_grad()loss.backward()optimizer.step()print(list(model.parameters()))
http://www.yayakq.cn/news/542193/

相关文章:

  • 自建免费网站哪个好自助建站 平台
  • 可信的品牌网站建设紫色 网站
  • 商城类网站功能列表网站需要怎么做
  • 馆陶网站建设电话沈阳全网推广公司哪家好
  • 广东省建设工程总监扣分查询网站网络运维是做什么的
  • 山东手机响应式网站建设设计网站首页ui
  • 网站怎么自己优化创新的邯郸网站建设
  • 南昌网站建设哪家比较好网站更改备案信息
  • 怎么给我 的网站做关键词wordpress的博客主题
  • 公司建网站价格10分钟免费建网站
  • 网站开发公司云鲸互创怎么联系文成网站制作
  • 广告网站建设保定行业网站
  • 做视频网站要什么软件下载杭州建设网造价平台
  • 建设一个旅游网站必备的网站建设二公司
  • 网站商城建设套餐网上自学平台
  • 免费建造网站太原广告公司网站建设
  • 长春制作网站软件像淘宝购物网站建设需要哪些专业人员
  • 做静态网站选用什么服务器厦门公司注册名称查询系统
  • 网站开发邮件购物网站的前台功能
  • 重庆找工作的网站济南营销型网站建设哪家好
  • 深圳市门户网站建设品牌dw一级网页制作教程
  • 自己怎么做视频收费网站做神马网站优化快速
  • 安远县建设局网站做标记网站
  • 招聘网站怎么做wordpress的主题是什么
  • 校园文化建设网站wordpress视频无法播放视频
  • 淮安做网站找哪家公司本地推广最有效的方法
  • 坑梓网站建设咨询wordpress 写模版
  • dede5.7网站搬家网上公司注册
  • 网站策划工资一般多少做网站的花费
  • Mui框架做网站万州网站建设公司