当前位置: 首页 > news >正文

做网站维护需要懂什么自己怎么开网站

做网站维护需要懂什么,自己怎么开网站,泰安岱岳区招聘网最新招聘信息,建设营销型网站多少钱这段代码的目的是计算给定整数数组的所有全排列(permutations),并返回一个包含所有排列的二维数组。 思路解析 在这段代码中,采用了 深度优先搜索(DFS) 和 回溯 的方法来生成所有的排列。 关键步骤&#xf…

这段代码的目的是计算给定整数数组的所有全排列(permutations),并返回一个包含所有排列的二维数组。

思路解析

在这段代码中,采用了 深度优先搜索(DFS)回溯 的方法来生成所有的排列。

关键步骤:

1. 回溯:我们通过交换数组中的元素,将数组的每个元素依次放置到每个位置,生成所有的排列组合。

2. 递归:每次递归处理当前索引位置的元素,继续处理下一个位置,直到递归到数组的末尾,表示完成一个排列。

3. 交换回溯:在每次递归后,通过交换操作还原数组的顺序,避免对后续递归产生影响。

代码解析


class Solution {public:vector<vector<int>> ans;  // 用于存储所有的排列vector<vector<int>> permute(vector<int>& nums) {dfs(nums, 0);  // 从数组的第一个位置开始深度优先搜索return ans;  // 返回所有的排列}void dfs(vector<int>& nums, int n) {// 如果当前的索引等于数组的长度,说明已经形成了一个排列if (n == nums.size()) {ans.push_back(nums);  // 将当前排列加入结果集中return;}// 遍历当前索引位置后的所有元素for (int i = n; i < nums.size(); i++) {swap(nums[i], nums[n]);  // 将第 i 个元素与第 n 个元素交换dfs(nums, n + 1);  // 递归处理下一个位置swap(nums[i], nums[n]);  // 交换回去,恢复原数组状态(回溯)}}};

详细注释

1. vector<vector<int>> ans;:

• 用于存储所有的排列组合。

2. vector<vector<int>> permute(vector<int>& nums):

• permute 是主函数,接受一个整数数组 nums 作为输入,返回一个包含所有排列的二维数组。

• dfs(nums, 0) 从 nums 的第 0 个位置开始深度优先搜索。

3. void dfs(vector<int>& nums, int n):

• dfs 是深度优先搜索的核心函数,负责递归生成排列。

• nums 是待排列的数组,n 是当前递归处理的索引位置。

4. if (n == nums.size()):

• 如果当前的索引 n 等于数组的大小,说明已经将所有元素排列完毕,形成了一个有效的排列。

• ans.push_back(nums) 将当前的排列(即 nums 数组的状态)加入结果集 ans。

5. for (int i = n; i < nums.size(); i++):

• 遍历当前索引 n 之后的每一个元素,通过交换生成不同的排列。

6. swap(nums[i], nums[n]);:

• 交换 nums[i] 和 nums[n],将 nums[i] 放到当前的位置 n。这样可以生成一个新的排列组合。

7. dfs(nums, n + 1):

• 递归调用 dfs,将处理下一个位置的元素。即当前元素已放置好,继续处理下一个索引。

8. swap(nums[i], nums[n]);:

• 交换回去,恢复原数组状态,这样可以进行下一轮的排列生成(即回溯)。这是为了确保后续的排列生成不会受到之前交换的影响。

好的,接下来我会详细地继续补充并完成整个 深度优先搜索(DFS)回溯 的运行步骤,直到所有排列都生成完毕。

输入数组:

nums = [1, 2, 3]

运行步骤:

我们通过 DFS 和回溯的方法生成 nums 数组的所有排列。

初始状态:

• 输入:nums = [1, 2, 3]

• ans = [](最终存储所有排列的结果)

第 1 层递归:n = 0 (处理第一个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 0,遍历 i = 0 到 i = 2。

1. 第 1 次交换:swap(nums[0], nums[0]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [1, 2, 3] 加入到 ans 中。

• ans = [[1, 2, 3]]

回溯:恢复状态

• 交换回去,恢复原数组 [1, 2, 3]。

• 返回到 n = 1,继续处理 i = 2。

2. 第 2 次交换:swap(nums[1], nums[2]),数组变为 [1, 3, 2]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [1, 3, 2],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [1, 3, 2]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [1, 3, 2] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2]]

回溯:恢复状态

• 交换回去,恢复原数组 [1, 3, 2]。

• 返回到 n = 1,恢复原数组 [1, 2, 3]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

第 2 次交换:n = 0 (处理第一个位置)

3. 第 2 次交换:swap(nums[0], nums[1]),数组变为 [2, 1, 3]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [2, 1, 3],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [2, 1, 3]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [2, 1, 3],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [2, 1, 3]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [2, 1, 3] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3]]

回溯:恢复状态

• 交换回去,恢复原数组 [2, 1, 3]。

• 返回到 n = 2,继续处理 i = 2。

2. 第 2 次交换:swap(nums[1], nums[2]),数组变为 [2, 3, 1]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [2, 3, 1],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [2, 3, 1]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [2, 3, 1] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]]

回溯:恢复状态

• 交换回去,恢复原数组 [2, 3, 1]。

• 返回到 n = 1,恢复原数组 [2, 1, 3]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

第 3 次交换:n = 0 (处理第一个位置)

4. 第 3 次交换:swap(nums[0], nums[2]),数组变为 [3, 2, 1]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [3, 2, 1],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [3, 2, 1]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [3, 2, 1],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [3, 2, 1]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [3, 2, 1] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1]]

回溯:恢复状态

• 交换回去,恢复原数组 [3, 2, 1]。

• 返回到 n = 2,恢复原数组 [3, 2, 1]。

• 返回到 n = 1,恢复原数组 [3, 2, 1]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

最终结果

最终生成的排列 ans 中包含了所有可能的排列:

ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]

总结

1. DFS 遍历:通过递归逐个处理每个位置,生成所有可能的字符组合。

2. 回溯:通过交换和恢复数组状态,确保生成所有排列。

3. 最终生成了所有的排列,并存储在 ans 中。

这样,我们使用回溯和 DFS 的方法成功计算出了所有的排列,并保存在 ans 数组中。

http://www.yayakq.cn/news/444531/

相关文章:

  • 网站建设一点通网站字体 font-family
  • 西安旅游服务网站建设dw免费网站模板下载
  • WordPress使用typecho主题防疫优化措施
  • 江苏专业网站建设费用响应式的网站建设一个多少钱
  • app开发制作平台网站建设建设网站知乎
  • 甘肃电子商务网站建设怎么做网站受众分析
  • 推广网站的公司哪个网络公司做网站好点
  • h5网站建设价格装修公司怎么找客源最有效
  • 淮安汽车网站制作网站推广原则
  • 官方网站免费建设seo综合查询平台官网
  • 建网站哪家好行业现状深圳二维码网站建设
  • 建设销售网站建e网怎么做效果图
  • 网站建设 浏览器兼容免费建设在线商城的网站
  • 织梦网站分享插件我想自己做一个网站
  • 温州专业营销网站费用浙江绿建设计院网站
  • 青海省建设厅网站备案资料网站一般用什么语言写
  • 火花机 东莞网站建设网站备案的要求
  • 网站制作完成中国银行建设网站首页
  • 免费网站模板建设有哪些可以在网上做兼职的网站
  • 如何建设公司网站知乎wordpress安装云服务器
  • 口碑好门户网站开发陈村网站设计
  • 住房与建设局网站成都旧房改造装修公司哪家好
  • 深圳专业软件网站建设广州番禺景点
  • 深圳专业手机网站建设一级造价工程师分几个专业
  • dell公司网站设计特色纯html网站
  • 网站备案 停站wordpress获取指定分类目录名称
  • 上海专业做网站公司地址网站制作需要什么人员
  • wordpress网站是什么wordpress欢迎页面模板下载
  • 专业苏州房产网站建设怎样做免费外贸网站
  • 专门做音乐的网站wordpress转为pdf