当前位置: 首页 > news >正文

app大全软件网站重庆seo顾问服务

app大全软件网站,重庆seo顾问服务,一个云主机怎么挂两个网站,用asp.net做后台网站分类任务是对离散变量预测,通过比较分类的概率来判断预测的结果。 softmax回归和线性回归一样也是将输入特征与权重做线性叠加,但是softmax回归的输出值个数等于标签中的类别数,这样就可以用于预测分类问题。 分类问题和线性回归的区别&#…

分类任务是对离散变量预测,通过比较分类的概率来判断预测的结果。

softmax回归和线性回归一样也是将输入特征与权重做线性叠加,但是softmax回归的输出值个数等于标签中的类别数,这样就可以用于预测分类问题。

分类问题和线性回归的区别:分类任务通常有多个输出,作为不同类别的置信度。

一、softmax回归

1.1 网络架构

为了解决线性模型的分类问题,我们需要和输出一样多的仿射函数,每个输出对应它自己的仿射函数。

与线性回归一样,softmax回归也是一个单层神经网络。

在softmax回归中,输出层的输出值大小就代表其所属类别的置信度大小,置信度最大的那个类别我们将其作为预测。

1.2 softmax运算

首先,分类任务的目标是通过比较每个类别的置信度大小来判断预测的结果。但是,我们不能选择未规范化的最大输出值的 o_i 的类别作为我们的预测,原因有两点:

1. 输出值 o_i的总和不一定为1

2. 输出值 o_i有可能为负数。

这违反了概率论基本公理,很难判断所预测的类别是否真符合真实值。

softmax函数通过如下公式,解决了以上问题

softmax函数确保了输出值的非负,和为1,这一种规范手段。

1.3 交叉熵损失函数

交叉熵损失常用来衡量两个概率之间的差别

根据公式推断, 交叉熵损失函数的偏导数是我们softmax函数分配的概率与实际发生的情况之间的差距,换句话来说,其梯度是真实概率 y 和预测概率 \hat{y} 之间的差距。

二、图像分类数据集

MNIST数据集是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。我们将使用类似但更复杂的Fashion-MNIST数据集。

2.1 导包

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2ld2l.use_svg_display()  # 用SVG显示图片

2.2 创建数据集

通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。

# 通过ToTensor实例将图像数据从PIL类型转化成32位的浮点数格式
# 并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)

查看Fashion-MNIST训练集和测试集大小,分别包含60000,10000张图片。

print(len(mnist_train), len(mnist_test))

查看图片分辨率,图片分辨率大小为[1, 28, 28]。

print(mnist_train[0][0].shape)

补充

torchvision.datasets 是Torchvision提供的标准数据集。

torchvision.transforms是包含一系列常用图像变换方法的包,可用于图像预处理、数据增强等工作。

torchvision.transforms.ToTensor()把一个取值范围是[0,255]PIL.Image或者shape(H,W,C)numpy.ndarray,转换成形状为[C,H,W],取值范围是[0,1.0]torch.FloadTensor(浮点型的tensor)。

 

2.3 可视化数据集函数

# 可视化数据集函数
def get_fashion_mnist_labels(labels):"""返回Fashion-MNIST数据集的文本标签"""text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):"""绘制图像列表"""figsize = (num_cols * scale, num_rows * scale)_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize) # 创建绘制num_rows*num_cols个子图的位置区域axes = axes.flatten() # 降维成一维数组for i, (ax, img) in enumerate(zip(axes, imgs)):if torch.is_tensor(img):# 图片张量ax.imshow(img.numpy()) # 负责对图像进行处理,并存入内存,并不显示else:# PIL图片ax.imshow(img)ax.axes.get_xaxis().set_visible(False) #不显示y轴ax.axes.get_yaxis().set_visible(False) #不显示x轴if titles:ax.set_title(titles[i])return axes

可视化展示训练集中前18个图片。

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))
d2l.plt.show() # 将plt.imshow()处理后的数据显示出来

plt.subplots(num_rows, num_cols, figsize):创建绘制num_rows*num_cols个子图的位置区域,其中子图大小为figsize。

enumerate():获取可迭代对象的每个元素的索引值及该元素值。

zip():用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

imshow():负责对图像进行处理,并存入内存,并不显示。

plt.show():将plt.imshow()处理后的数据显示出来。

2.4 读取小批量

使用4个进程,以批量大小为256,来读取数据集。

# 读取小批量
batch_size = 256def get_dataloader_workers(): """使用4个进程来读取数据"""return 4train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers())

2.5 整合所有组件

这个函数包含了以上所有工作。

def load_data_fashion_mnist(batch_size, resize=None):"""下载Fashion-MNIST数据集,然后将其加载到内存中"""trans = [transforms.ToTensor()]if resize:trans.insert(0, transforms.Resize(resize)) #修改图片大小trans = transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))

http://www.yayakq.cn/news/255795/

相关文章:

  • 基于h5的网站开发网站 提示建设中
  • 通过备案号查网站纹理网站推荐
  • 公司网站域名价格wordpress js 添加图片
  • 在自己的网站做百度搜索框个人网站设计作品图片
  • 网站建设江门全屏网站是什么意思
  • 西安网站设计开发人才设计师图片素材网站
  • 免费网站服务商城小程序开发费用
  • 怎么做彩票网站平台赣州网络推广行业
  • 公司网站建设框架wordpress 2个域名
  • 国企网站建设要求工业设计专业最好的大学
  • 深圳做网站排名哪家好外贸联系网站
  • 网站建设归哪个部门深圳住建局工程交易中心
  • 给别人做网站必须有icpiis7.5怎么做网站
  • 徐汇网站推广05网课课练答案
  • 红色页面网站苍南配网设计
  • 购物网站网页设计网站建设研究课题
  • 优购物官方网站地址网站是否正常
  • 建一个公司网站要多久傻瓜内网网站建设
  • 能力建设和继续教育中心网站站长之家网站建设
  • 医院网站建设目的wordpress响应式主题在哪里
  • 管理系统和网站哪个好做国家对网站建设补助
  • 手机网站建设宣传好wordpress模板工作室
  • 网站有备案号吗沈阳泌尿科十大排行医院
  • 做微信公众号整合网站贵溪市城乡建设局网站
  • 网站建设四端一体做网站的集团
  • 网站内容建设方案制作梦核的网站
  • 室内设计图网站有哪些网站建设代理平台
  • 做网站如何使用特殊字体长春网站建设设计
  • 购物网站线下推广方案网上商城运营推广思路
  • 网站建设内容与实现功能网站开发方向和移动开发方向那个好