当前位置: 首页 > news >正文

深圳贸易网站开发网站分页样式

深圳贸易网站开发,网站分页样式,徐州专业网站制作,小程序开发定制北京公司二叉搜索树概念和定义 二叉搜索树是一个二叉树,其中每个节点的值都满足以下条件: 节点的左子树只包含小于当前节点值的节点。节点的右子树只包含大于当前节点值的节点。左右子树也必须是二叉搜索树。 二叉树搜索树性质 从上面的二叉搜索树定义中可以了…

二叉搜索树概念和定义

二叉搜索树是一个二叉树,其中每个节点的值都满足以下条件:

  • 节点的左子树只包含小于当前节点值的节点。
  • 节点的右子树只包含大于当前节点值的节点。
  • 左右子树也必须是二叉搜索树。

二叉树搜索树性质

从上面的二叉搜索树定义中可以了解到, 二叉搜索树是有序的.

通过中序遍历, 会发现这是个有序的序列, 升序或降序 (自己决定)

二叉搜索树只支持增删查, 不支持该.
因为如果随意修改二叉搜索树节点的值, 那么就有可能会导致, 这棵树不再满足二叉搜索树的条件.

二叉搜索树的查找的时间复杂度: 
最好情况: O(log n)
最坏情况: O(N)

当二叉搜索树是以上的情况时, 就变成了链表, 那么时间复杂度就是 O(N).

二叉搜索树中是不能出现相同元素的.

二叉搜索树模拟实现

创建一个二叉搜索树节点类

template<class T>
struct SearchTreeNode
{T _data; // 存储数据SearchTreeNode<T>* _leftchile; // 指向左孩子SearchTreeNode<T>* _rightchild; // 指向右孩子SearchTreeNode(const T& data):_data(data),_leftchile(nullptr),_rightchild(nullptr){}
};

二叉搜索树类创建

template<class T>
class SearchTree
{typedef SearchTreeNode<T> SearchTreeNode;
public:bool insert(const T& data){}bool erase(const T& data){}bool find(const T& data){}
private:SearchTreeNode* _root;
};

二叉搜索树的插入

二叉搜索树的插入非常简单.
从根节点开始, 如果插入的值小于节点值, 那么向左走,
如果插入的值大于节点值, 那么向右走,
如果值已存在, 那么直接返回 false.

bool insert(const T& data)
{SearchTreeNode* node = new SearchTreeNode(data);if (_root == nullptr) // 如果 _root 为空, 那么也就需要更新 _root 节点{_root = node;return true;}else{SearchTreeNode* prev = nullptr; // 记录插入位置的父节点SearchTreeNode* cur = _root; // 查找插入位置while (cur != nullptr){if (cur->_data == data) // 如果要插入的数据已存在, 直接返回{return false;}if (data < cur->_data) // 要插入的数据小于节点数据, 向左走{prev = cur;cur = cur->_leftchile;}else // 要插入的数据大于节点数据, 向右走{prev = cur;cur = cur->_rightchild;}}if (data < prev->_data) // 判断要插入的位置是左边还是右边{prev->_leftchile = node;}else{prev->_rightchild = node;}return true;}
}

二叉搜索树的删除

1. 被删除的节点最多只有一个孩子

1) 被删除的节点是叶子节点, 没有孩子

这种情况下, 直接将这个节点删除即可

2) 被删除的节点只有左孩子

将本节点删除后, 将节点的左孩子连接到本节点的父节点上

3) 被删除的节点只有右孩子

和只有左孩子相同, 删除本节点, 右孩子连接到本节点的父节点上

void erase(const T& data)
{SearchTreeNode* prev = nullptr;SearchTreeNode* cur = _root;while (cur != nullptr) // 先查找是否存在这个值{if (data == cur->_data){break;}prev = cur;if (data < cur->_data){cur = cur->_leftchile;}else{cur = cur->_rightchild;}}if (cur == nullptr) // 不存在这个值, 直接返回{return;}if (cur->_leftchile == nullptr || cur->_rightchild == nullptr) // 存在这个节点, 这个节点没有孩子, 或者只有一个孩子{if (cur->_leftchile == nullptr) // 只有右孩子{if (_root == cur) // 如果要删除的节点就是 _root, 更新 _root{_root = cur->_rightchild;}else{if (prev->_leftchile = cur) // 判断要连接再父节点的哪边{prev->_leftchile = cur->_rightchild;}else{prev->_rightchild = cur->_rightchild;}}}else{if (_root == cur){_root = cur->_leftchile;}else{if (prev->_leftchile = cur){prev->_leftchile = cur->_leftchile;}else{prev->_rightchild = cur->_leftchile;}}}delete cur;}
}

2. 被删除的节点有两个孩子

我们不直接删除这个节点, 使用和 堆 删除节点差不多的方法.

我们将要删除的这个节点和一个最多只有一个孩子的节点进行交换

然后删除那个交换后的值.

那么这个交换的节点怎么选择.

1. 本节点右子树中的最小值的那个节点 (即右子树的最左节点)

2. 本节点左子树中的最大值的那个节点 (左子树的最右节点)

这两个选择方法, 选择出来的要交换的节点的值, 都是最接近 本节点值的 节点.

 找到这个节点之后, 交换 cur 和 child 的值, 然后删除 child 节点即可.

void erase(const T& data)
{SearchTreeNode* prev = nullptr;SearchTreeNode* cur = _root;while (cur != nullptr) // 先查找是否存在这个值{if (data == cur->_data){break;}prev = cur;if (data < cur->_data){cur = cur->_leftchile;}else{cur = cur->_rightchild;}}if (cur == nullptr) // 不存在这个值, 直接返回{return;}if (cur->_leftchile == nullptr || cur->_rightchild == nullptr) // 存在这个节点, 这个节点没有孩子, 或者只有一个孩子{if (cur->_leftchile == nullptr){if (_root == cur){_root = cur->_rightchild;}else{if (prev->_leftchile = cur){prev->_leftchile = cur->_rightchild;}else{prev->_rightchild = cur->_rightchild;}}}else{if (_root == cur){_root = cur->_leftchile;}else{if (prev->_leftchile = cur){prev->_leftchile = cur->_leftchile;}else{prev->_rightchild = cur->_leftchile;}}}delete cur;}else // 这个节点有两个孩子, 上半部分代码 和 文章上面的代码是一样的{prev = cur;SearchTreeNode* child = cur->_rightchild; // 要删除的节点while (child->_leftchile != nullptr) // 查找符合要求的节点{prev = child;child = child->_leftchile;}cur->_data = child->_data; // 交换数据if (child->_rightchild == nullptr) // child 是叶子节点{if (prev == cur) // 可以看下图演示{prev->_rightchild = nullptr;}else{prev->_leftchile = nullptr;}}else // child 有右子树, 这不可能有左子树, 因为这里找的就是最左节点{if (prev == cur){prev->_rightchild = cur->_rightchild;}else{prev->_leftchile = child->_rightchild;}}delete child;}
}

那么另一种方法, 和这种方法差不多, 会一种就会另一种. 
去本节点左子树中, 查找最右的节点.

至于查找功能, 无论是再插入还是删除中, 都有这部分操作.

http://www.yayakq.cn/news/882966/

相关文章:

  • 淘宝客自己做网站吗苏州手机网站建设方法
  • 做网站公司简介模版企业信息填报系统登录
  • 网站策划与建设阶段的推广的目标网站采集怎么做
  • 阳江商城网站开发设计青岛网站推广公司
  • 济南建站公司电话wordpress 支持svg
  • 江苏靖江苏源建设有限公司网站ps制作素材图片
  • 漳州网站开发源码可以做网站吗
  • 微擎做网站费用农家乐网站设计
  • 北京大兴做环保备案网站88黄页企业名录
  • django做网站怎么给喜欢的人做网站
  • 艺术作品欣赏网站磁力引擎
  • 广州网站优化工具服务竞价排名适合百度吗
  • 上海网站建设__永灿品牌建站360建筑网如何注销账号
  • 网站方案设计与论证网站开发报价单 doc
  • 西安手机网站建设动力无限陕西交通建设集团网站
  • 做动漫网站需要服务器么包工头网
  • 合肥市公司网站建设建筑网校培训机构排名
  • 山东网站建设服务品牌全案公司排名
  • 怎样凡科建设网站网店运营公司
  • 银川网站建站公司做企业竞争模拟的网站
  • 西安网站建设哪些公司好设计网站要包含信息类型
  • 网站建设微信营销公司网站服务器在那里找
  • wap 企业网站做外贸的网站如何选择服务器
  • php服装网站模板评价一个网站的好坏
  • wordpress来建站wordpress自动缩略图
  • 简洁大气网站源码制作网站软件用什么语言
  • 网站文档怎么加图片不显示不出来鹤壁seo公司
  • 免费企业建站选哪家黄页88网站关键词怎么做
  • 新网站为什么做的这么难《网站建设教程
  • 快速建站网站wordpress主题 站长