当前位置: 首页 > news >正文

做数学ppt工具的网站wordpress输入密码访问

做数学ppt工具的网站,wordpress输入密码访问,asp与sql网站建设,可以建设网站的软件说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在当今的大数据时代,面对海量且维度极高的数据集,如何高效地进行特征选择成为了提升机器学习…

说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取。

1.项目背景

在当今的大数据时代,面对海量且维度极高的数据集,如何高效地进行特征选择成为了提升机器学习模型性能的关键挑战之一。传统BP神经网络虽然在处理非线性分类问题上展现出强大能力,但其对初始权重敏感、易陷入局部最优解等缺点限制了其应用效果。为解决这些问题,本项目引入HPSO_TVAC(混合粒子群优化算法结合时变加速度系数),通过其强大的全局搜索能力来优化BP神经网络的输入特征选择过程。这种组合不仅有助于克服BP神经网络固有的局限性,还能显著提高分类精度和模型泛化能力。基于Python平台实现这一方法研究,旨在探索一种更有效的特征选择策略,为复杂数据环境下的模式识别与智能决策提供新的解决方案,具有重要的理论意义和广泛的应用前景。 

本项目通过基于HPSO_TVAC与BP神经网络分类模型的特征选择方法研究(Python实现)。            

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

x11

12

x12

13

x13

14

x14

15

x15

16

x16

17

x17

18

x18

19

x19

20

x20

21

x21

22

x22

23

x23

24

x24

25

x25

26

x26

27

x27

28

x28

29

x29

30

x30

31

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有31个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

部分数据变量的相关性分析:从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%验证集进行划分,关键代码如下:

6.构建特征选择模型 

主要通过基于HPSO_TVAC与BP神经网络分类模型的特征选择方法研究(Python实现)。           

6.1 寻找最优特征

最优特征值:    

6.2 最优特征构建模型

这里通过最优特征构建分类模型。 

模型名称

模型参数

BP神经网络分类模型    

units=32

optimizer =opt = tf.keras.optimizers.Adam(learning_rate=0.01)

epochs=50

6.3 模型摘要信息

6.4 模型训练集测试集准确率和损失曲线图

7.模型评估

7.1评估指标及结果  

评估指标主要包括准确率、查准率、查全率、F1分值等等。 

模型名称

指标名称

指标值

测试集

BP神经网络分类模型  

准确率

0.9050

查准率

0.8732

查全率

0.9372

F1分值 

0.904

从上表可以看出,F1分值为0.904,说明模型效果良好。               

关键代码如下:   

7.2 分类报告

从上图可以看出,分类为0的F1分值为0.91;分类为1的F1分值为0.90。     

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有26个样本,实际为1预测不为1的 有12个样本,模型效果良好。   

8.结论与展望

综上所述,本文采用了通过基于HPSO_TVAC与BP神经网络分类模型的特征选择方法研究(Python实现),最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。

http://www.yayakq.cn/news/833291/

相关文章:

  • 惠州网站建设惠州织梦网站装修公司源码
  • 网站打开速度很慢developer官网下载
  • 超值高端网站设计免费一卡二卡三
  • 网站开发内容怎么写想招人去哪个平台免费
  • 徐州优化网站建设移动端和pc端的意思
  • 床上做受网站永久免费建站空间
  • 如何用dede做带下单的网站深圳网站商城定制设计
  • 设计专业新手网站如何用dw做旅游网站目录
  • wordpress网站费用手机网站的优缺点
  • 住房和建设部网站做网站分什么软件
  • 北京企业建设网站公司哪里有创建网站的
  • 国内外网站网站公司内部自己做抽奖网站
  • 自己视频怎么上传网站文字怎么生成网址链接
  • 科技类网站色彩搭配怎么给别人做网站优化
  • 淄博建设局官方网站网站建设免费加盟代理
  • 深圳均安网站制作徐州有哪些网站制作公司
  • 枣庄网站建设制作活动策划网站
  • 一手房哪个网站做信息效果好wordpress是php语言
  • 重庆市企业网站建设焦作整站优化
  • 企业网站建设运营企业如何进行品牌推广
  • 网站制作遨游免费机械外发加工网
  • 做网站需要多少台服务器济南精品建站外包公司价格
  • 网站策划技巧公司网站运营公司排名
  • 网站分页代码开发一个交易平台需要多少钱
  • 哪个旅游网站做的最好套别人的网站模板
  • 怎样做博客网站县城做网站
  • 做网站需要哪些软件建设一个门户网站
  • 商城网站页面设计汉字logo标志设计
  • 河北省住房和城乡建设部网站首页搜索引擎排名影响因素有哪些
  • 南京定制网站建设c2c网站建设价格