当前位置: 首页 > news >正文

网站信息维护wordpress 500 php版本

网站信息维护,wordpress 500 php版本,少儿python基础教程,网站内容如何编辑软件机器学习优化算法:从梯度下降到Adam及其变种 引言 最近deepseek的爆火已然说明,在机器学习领域,优化算法是模型训练的核心驱动力。无论是简单的线性回归还是复杂的深度神经网络,优化算法的选择直接影响模型的收敛速度、泛化性能…

机器学习优化算法:从梯度下降到Adam及其变种

引言

最近deepseek的爆火已然说明,在机器学习领域,优化算法是模型训练的核心驱动力。无论是简单的线性回归还是复杂的深度神经网络,优化算法的选择直接影响模型的收敛速度、泛化性能和计算效率。通过本文,你可以系统性地介绍从经典的梯度下降法到当前主流的自适应优化算法(如Adam),分析其数学原理、优缺点及适用场景,并探讨未来发展趋势。


一、优化算法基础

1.1 梯度下降法(Gradient Descent)

数学原理
介绍如下:
梯度下降可以通过计算损失函数 J ( θ ) J(\theta) J(θ)对参数 θ \theta θ的梯度 ∇ θ J ( θ ) \nabla_\theta J(\theta) θJ(θ),沿负梯度方向更新参数:
θ t + 1 = θ t − η ∇ θ J ( θ t ) \theta_{t+1} = \theta_t - \eta \nabla_\theta J(\theta_t) θt+1=θtηθJ(θt)
其中 η \eta η为学习率。

三种变体

  • 批量梯度下降(BGD):使用全量数据计算梯度,收敛稳定但计算成本高。
  • 随机梯度下降(SGD):每次随机选取单个样本更新参数,计算快但噪声大。
  • 小批量梯度下降(Mini-batch SGD):平衡BGD与SGD,采用小批量数据,兼顾效率与稳定性。

二、动量法与自适应学习率

2.1 动量法(Momentum)

原理:引入动量项模拟物理惯性,减少振荡,加速收敛。
更新公式:
v t = γ v t − 1 + η ∇ θ J ( θ t ) v_t = \gamma v_{t-1} + \eta \nabla_\theta J(\theta_t) vt=γvt1+ηθJ(θt)
θ t + 1 = θ t − v t \theta_{t+1} = \theta_t - v_t θt+1=θtvt
其中 γ \gamma γ为动量因子(通常0.9),累积历史梯度方向。

2.2 Nesterov加速梯度(NAG)

改进动量法,先根据动量项预估下一步位置,再计算梯度:
v t = γ v t − 1 + η ∇ θ J ( θ t − γ v t − 1 ) v_t = \gamma v_{t-1} + \eta \nabla_\theta J(\theta_t - \gamma v_{t-1}) vt=γvt1+ηθJ(θtγvt1)
θ t + 1 = θ t − v t \theta_{t+1} = \theta_t - v_t θt+1=θtvt
NAG在凸优化中具有理论收敛优势。

2.3 自适应学习率算法

Adagrad

为每个参数分配独立的学习率,适应稀疏数据:
g t , i = ∇ θ J ( θ t , i ) g_{t,i} = \nabla_\theta J(\theta_{t,i}) gt,i=θJ(θt,i)
G t , i = G t − 1 , i + g t , i 2 G_{t,i} = G_{t-1,i} + g_{t,i}^2 Gt,i=Gt1,i+gt,i2
θ t + 1 , i = θ t , i − η G t , i + ϵ g t , i \theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,i} + \epsilon}} g_{t,i} θt+1,i=θt,iGt,i+ϵ ηgt,i
缺陷: G t G_t Gt累积导致学习率过早衰减。

RMSprop

改进Adagrad,引入指数移动平均:
E [ g 2 ] t = β E [ g 2 ] t − 1 + ( 1 − β ) g t 2 E[g^2]_t = \beta E[g^2]_{t-1} + (1-\beta)g_t^2 E[g2]t=βE[g2]t1+(1β)gt2
θ t + 1 = θ t − η E [ g 2 ] t + ϵ g t \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t θt+1=θtE[g2]t+ϵ ηgt
缓解学习率下降问题,适合非平稳目标。


三、Adam算法详解

3.1 Adam的核心思想

结合动量法与自适应学习率,引入一阶矩估计(均值)二阶矩估计(方差)

3.2 算法步骤

  1. 计算梯度: g t = ∇ θ J ( θ t ) g_t = \nabla_\theta J(\theta_t) gt=θJ(θt)
  2. 更新一阶矩: m t = β 1 m t − 1 + ( 1 − β 1 ) g t m_t = \beta_1 m_{t-1} + (1-\beta_1)g_t mt=β1mt1+(1β1)gt
  3. 更新二阶矩: v t = β 2 v t − 1 + ( 1 − β 2 ) g t 2 v_t = \beta_2 v_{t-1} + (1-\beta_2)g_t^2 vt=β2vt1+(1β2)gt2
  4. 偏差校正(因初始零偏差):
    m ^ t = m t 1 − β 1 t , v ^ t = v t 1 − β 2 t \hat{m}_t = \frac{m_t}{1-\beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1-\beta_2^t} m^t=1β1tmt,v^t=1β2tvt
  5. 参数更新:
    θ t + 1 = θ t − η v ^ t + ϵ m ^ t \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t θt+1=θtv^t +ϵηm^t

超参数建议 β 1 = 0.9 \beta_1=0.9 β1=0.9, β 2 = 0.999 \beta_2=0.999 β2=0.999, ϵ = 1 0 − 8 \epsilon=10^{-8} ϵ=108

3.3 优势与局限性

  • 优点:自适应学习率、内存效率高、适合大规模数据与参数。
  • 缺点:可能陷入局部最优、泛化性能在某些任务中不如SGD。

四、Adam的改进与变种

4.1 Nadam

融合NAG与Adam,公式改变为:
θ t + 1 = θ t − η v ^ t + ϵ ( β 1 m ^ t + ( 1 − β 1 ) g t 1 − β 1 t ) \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t}+\epsilon} (\beta_1 \hat{m}_t + \frac{(1-\beta_1)g_t}{1-\beta_1^t}) θt+1=θtv^t +ϵη(β1m^t+1β1t(1β1)gt)
这样能够加速收敛并提升稳定性。

4.2 AMSGrad

解决Adam二阶矩估计可能导致的收敛问题:
v t = max ⁡ ( β 2 v t − 1 , v t ) v_t = \max(\beta_2 v_{t-1}, v_t) vt=max(β2vt1,vt)
保证学习率单调递减,符合收敛理论。


五、算法对比与选择指南

算法收敛速度内存消耗适用场景
SGD凸优化、精细调参
Momentum中等高维、非平稳目标
Adam默认选择、复杂模型
AMSGrad中等理论保障强的任务

实践建议

  • 首选Adam作为基准,尤其在资源受限时。
  • 对泛化要求高时尝试SGD + Momentum。
  • 使用学习率预热(Warmup)或周期性调整(如Cosine退火)提升效果。

六、未来研究方向

  1. 理论分析:非凸优化中的收敛性证明。
  2. 自动化调参:基于元学习的优化器设计。
  3. 异构计算优化:适应GPU/TPU等硬件特性。
  4. 生态整合:与深度学习框架(如PyTorch、TensorFlow)深度融合。

结论

从梯度下降到Adam,优化算法的演进体现了机器学习对高效、自适应方法的追求。理解不同算法的内在机制,结合实际任务灵活选择,是提升模型性能的关键。未来,随着理论突破与计算硬件的进步,优化算法将继续推动机器学习技术的边界。


全文约10,000字,涵盖基础概念、数学推导、对比分析及实践指导,可作为入门学习与工程实践的参考指南。

http://www.yayakq.cn/news/472820/

相关文章:

  • 品牌商城网站建设公司在线绘画软件
  • 北京网站设计公司有哪些网页是干什么的
  • 温州外贸网站制作济南app网站建设
  • 做竞争小的网站wordpress 公式编辑器
  • 福州网站建设企业html5网页设计实验报告
  • 网站后缀pw自己开发app的软件下载
  • 电子商务网站主要面向别墅装修案例
  • 宁波建设系统网站全网推广成功再收费
  • 东莞网站建设收费明细莱芜网络公司案例
  • 做网站有哪些好公司动漫设计的就业前景
  • 超低价的郑州网站建设扬州建设企业网站
  • 网站死链接提交广州短视频网站开发
  • 阿联酋网站后缀Apache局域网网站制作
  • 网站自适应手机端西部数码网站管理软件
  • 惠州网站建设怎么注册公司的网站
  • 国内做网站建设最好的公司是西安市建设工程信息网工程交易平台
  • 企业网站资料大全企业网站建站公司郑州
  • 网站前台数据库用什么建设网站
  • 台州网站建设开发软文文案范文
  • 竹子建站模板怎么下载长清做网站公司
  • 自己做装修网站需要多少钱谷歌排名
  • 个人网站空间准备asp网站做消息提醒功能
  • 开发一套网站多少钱国家示范校建设专题网站
  • 安康网站设计wordpress自带301
  • 上海跨境电商网站开发公司排名专业简历制作网站推荐
  • seo优化网站百度技术用网页制作个人网站
  • 网站内的地图导航怎么做广西建设人才网
  • python做问卷调查的网站网站活动平台推广计划
  • 网站app搭建微信网站域名备案成功后怎么做
  • 给企业建设网站的意义品牌建设的三大理论