当前位置: 首页 > news >正文

学习电子商务网站建设与管理的感想17做网站郑州

学习电子商务网站建设与管理的感想,17做网站郑州,免费建网站的,内蒙古知名网站建设文章目录 机器学习应用实践1.1 准备数据此处进行的调整为:要所有数据进行拆分 1.2 定义假设函数Sigmoid 函数 1.3 定义代价函数1.4 定义梯度下降算法gradient descent(梯度下降) 此处进行的调整为:采用train_x, train_y进行训练 1.5 绘制决策边界1.6 计算…

文章目录

  • 机器学习应用实践
    • 1.1 准备数据
      • 此处进行的调整为:要所有数据进行拆分
    • 1.2 定义假设函数
        • Sigmoid 函数
    • 1.3 定义代价函数
    • 1.4 定义梯度下降算法
        • gradient descent(梯度下降)
      • 此处进行的调整为:采用train_x, train_y进行训练
    • 1.5 绘制决策边界
    • 1.6 计算准确率
      • 此处进行的调整为:采用X_test和y_test来测试进行训练
    • 1.7 试试用Sklearn来解决
      • 此处进行的调整为:采用X_train和y_train进行训练
      • 此处进行的调整为:采用X_test和y_test进行训练
    • 1.8 如何选择超参数?比如多少轮迭代次数好?
    • 1.9 如何选择超参数?比如学习率设置多少好?
    • 1.10 如何选择超参数?试试调整l2正则化因子
    • 实验4(2) 完成正则化因子的调参,下面给出了正则化因子lambda的范围,请参照学习率的调参,完成下面代码

机器学习应用实践

上一次练习中,我们采用逻辑回归并且应用到一个分类任务。

但是,我们用训练数据训练了模型,然后又用训练数据来测试模型,是否客观?接下来,我们仅对实验1的数据划分进行修改

需要改的地方为:下面红色部分给出了具体的修改。

1 训练数据数量将会变少

2 评估模型时要采用测试集

1.1 准备数据

本实验的数据包含两个变量(评分1和评分2,可以看作是特征),某大学的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。因此,构建一个可以基于两次测试评分来评估录取可能性的分类模型。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()
Exam1Exam2Admitted
034.62366078.0246930
130.28671143.8949980
235.84740972.9021980
360.18259986.3085521
479.03273675.3443761
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
#准备训练数据
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X.shape
(100, 3)
X=X.values
X.shape
(100, 3)
y=y.values
y.shape
(100,)

此处进行的调整为:要所有数据进行拆分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2,random_state=0)
train_x,test_x,train_y,test_y
(array([[ 1.        , 82.36875376, 40.61825516],[ 1.        , 56.2538175 , 39.26147251],[ 1.        , 60.18259939, 86.3085521 ],[ 1.        , 64.03932042, 78.03168802],[ 1.        , 62.22267576, 52.06099195],[ 1.        , 62.0730638 , 96.76882412],[ 1.        , 61.10666454, 96.51142588],[ 1.        , 74.775893  , 89.5298129 ],[ 1.        , 67.31925747, 66.58935318],[ 1.        , 47.26426911, 88.475865  ],[ 1.        , 75.39561147, 85.75993667],[ 1.        , 88.91389642, 69.8037889 ],[ 1.        , 94.09433113, 77.15910509],[ 1.        , 80.27957401, 92.11606081],[ 1.        , 99.27252693, 60.999031  ],[ 1.        , 93.1143888 , 38.80067034],[ 1.        , 70.66150955, 92.92713789],[ 1.        , 97.64563396, 68.86157272],[ 1.        , 30.05882245, 49.59297387],[ 1.        , 58.84095622, 75.85844831],[ 1.        , 30.28671077, 43.89499752],[ 1.        , 35.28611282, 47.02051395],[ 1.        , 94.44336777, 65.56892161],[ 1.        , 51.54772027, 46.85629026],[ 1.        , 79.03273605, 75.34437644],[ 1.        , 53.97105215, 89.20735014],[ 1.        , 67.94685548, 46.67857411],[ 1.        , 83.90239366, 56.30804622],[ 1.        , 74.78925296, 41.57341523],[ 1.        , 45.08327748, 56.31637178],[ 1.        , 90.44855097, 87.50879176],[ 1.        , 71.79646206, 78.45356225],[ 1.        , 34.62365962, 78.02469282],[ 1.        , 40.23689374, 71.16774802],[ 1.        , 61.83020602, 50.25610789],[ 1.        , 79.94481794, 74.16311935],[ 1.        , 75.01365839, 30.60326323],[ 1.        , 54.63510555, 52.21388588],[ 1.        , 34.21206098, 44.2095286 ],[ 1.        , 90.54671411, 43.39060181],[ 1.        , 95.86155507, 38.22527806],[ 1.        , 85.40451939, 57.05198398],[ 1.        , 40.45755098, 97.53518549],[ 1.        , 32.57720017, 95.59854761],[ 1.        , 82.22666158, 42.71987854],[ 1.        , 68.46852179, 85.5943071 ],[ 1.        , 52.10797973, 63.12762377],[ 1.        , 80.366756  , 90.9601479 ],[ 1.        , 39.53833914, 76.03681085],[ 1.        , 52.34800399, 60.76950526],[ 1.        , 76.97878373, 47.57596365],[ 1.        , 38.7858038 , 64.99568096],[ 1.        , 91.5649745 , 88.69629255],[ 1.        , 99.31500881, 68.77540947],[ 1.        , 55.34001756, 64.93193801],[ 1.        , 66.74671857, 60.99139403],[ 1.        , 67.37202755, 42.83843832],[ 1.        , 89.84580671, 45.35828361],[ 1.        , 72.34649423, 96.22759297],[ 1.        , 50.4581598 , 75.80985953],[ 1.        , 62.27101367, 69.95445795],[ 1.        , 64.17698887, 80.90806059],[ 1.        , 94.83450672, 45.6943068 ],[ 1.        , 77.19303493, 70.4582    ],[ 1.        , 34.18364003, 75.23772034],[ 1.        , 66.56089447, 41.09209808],[ 1.        , 74.24869137, 69.82457123],[ 1.        , 82.30705337, 76.4819633 ],[ 1.        , 78.63542435, 96.64742717],[ 1.        , 32.72283304, 43.30717306],[ 1.        , 75.47770201, 90.424539  ],[ 1.        , 33.91550011, 98.86943574],[ 1.        , 89.67677575, 65.79936593],[ 1.        , 57.23870632, 59.51428198],[ 1.        , 84.43281996, 43.53339331],[ 1.        , 42.26170081, 87.10385094],[ 1.        , 49.07256322, 51.88321182],[ 1.        , 44.66826172, 66.45008615],[ 1.        , 97.77159928, 86.72782233],[ 1.        , 51.04775177, 45.82270146]]),array([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0], dtype=int64),array([[ 1.        , 80.19018075, 44.82162893],[ 1.        , 42.07545454, 78.844786  ],[ 1.        , 35.84740877, 72.90219803],[ 1.        , 49.58667722, 59.80895099],[ 1.        , 99.8278578 , 72.36925193],[ 1.        , 74.49269242, 84.84513685],[ 1.        , 69.07014406, 52.74046973],[ 1.        , 60.45788574, 73.0949981 ],[ 1.        , 50.28649612, 49.80453881],[ 1.        , 83.48916274, 48.3802858 ],[ 1.        , 34.52451385, 60.39634246],[ 1.        , 55.48216114, 35.57070347],[ 1.        , 60.45555629, 42.50840944],[ 1.        , 69.36458876, 97.71869196],[ 1.        , 75.02474557, 46.55401354],[ 1.        , 61.37928945, 72.80788731],[ 1.        , 50.53478829, 48.85581153],[ 1.        , 77.92409145, 68.97235999],[ 1.        , 52.04540477, 69.43286012],[ 1.        , 76.0987867 , 87.42056972]]),array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],dtype=int64))
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((80, 3), (20, 3), (80,), (20,))
train_x.shape,train_y.shape
((80, 3), (20, 3))

1.2 定义假设函数

Sigmoid 函数

g g g 代表一个常用的逻辑函数(logistic function)为 S S S形函数(Sigmoid function),公式为: g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1
合起来,我们得到逻辑回归模型的假设函数:
h ( x ) = 1 1 + e − w T x {{h}}\left( x \right)=\frac{1}{1+{{e}^{-{{w }^{T}}x}}} h(x)=1+ewTx1

def sigmoid(z):return 1 / (1 + np.exp(-z))

让我们做一个快速的检查,来确保它可以工作。

w=np.zeros((X.shape[1],1))
#定义假设函数h(x)=1/(1+exp^(-w.Tx))
def h(X,w):z=X@wh=sigmoid(z)return h

1.3 定义代价函数

 y_hat=sigmoid(X@w)
X.shape,y.shape,np.log(y_hat).shape
((100, 3), (100,), (100, 1))

现在,我们需要编写代价函数来评估结果。
代价函数:
J ( w ) = − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( h ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h ( x ( i ) ) ) ) J\left(w\right)=-\frac{1}{m}\sum\limits_{i=1}^{m}{({{y}^{(i)}}\log \left( {h}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h}\left( {{x}^{(i)}} \right) \right))} J(w)=m1i=1m(y(i)log(h(x(i)))+(1y(i))log(1h(x(i))))

#代价函数构造
def cost(X,w,y):#当X(m,n+1),y(m,),w(n+1,1)y_hat=h(X,w)right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())cost=-np.sum(right)/X.shape[0]return cost
#设置初始的权值
w=np.zeros((X.shape[1],1))
#查看初始的代价
cost(X,w,y)
0.6931471805599453

看起来不错,接下来,我们需要一个函数来计算我们的训练数据、标签和一些参数 w w w的梯度。

1.4 定义梯度下降算法

gradient descent(梯度下降)

  • 这是批量梯度下降(batch gradient descent)
  • 转化为向量化计算: 1 m X T ( S i g m o i d ( X W ) − y ) \frac{1}{m} X^T( Sigmoid(XW) - y ) m1XT(Sigmoid(XW)y)
    ∂ J ( w ) ∂ w j = 1 m ∑ i = 1 m ( h ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J\left( w \right)}{\partial {{w }_{j}}}=\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{_{j}}^{(i)}} wjJ(w)=m1i=1m(h(x(i))y(i))xj(i)
h(X,w).shape
(100, 1)
def grandient(X,y,iter_num,alpha):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[]for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(X.shape[1]):right=np.multiply(y_pred.ravel(),X[:,j])gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*gradientw=tempcost_lst.append(cost(X,w,y.ravel()))return w,cost_lst

此处进行的调整为:采用train_x, train_y进行训练

train_x.shape,train_y.shape
((80, 3), (20, 3))
iter_num,alpha=100000,0.001
w,cost_lst=grandient(X_train, y_train,iter_num,alpha)
cost_lst[iter_num-1]
0.38273008292061245
plt.plot(range(iter_num),cost_lst,"b-o")
[<matplotlib.lines.Line2D at 0x1d0f1417d30>]

1

Xw—X(m,n) w (n,1)

w
array([[-4.86722837],[ 0.04073083],[ 0.04257751]])

1.5 绘制决策边界

高维数据的决策边界无法可视化

1.6 计算准确率

此处进行的调整为:采用X_test和y_test来测试进行训练

如何用我们所学的参数w来为数据集X输出预测,来给我们的分类器的训练精度打分。
逻辑回归模型的假设函数:
h ( x ) = 1 1 + e − w T X {{h}}\left( x \right)=\frac{1}{1+{{e}^{-{{w }^{T}}X}}} h(x)=1+ewTX1
h {{h}} h大于等于0.5时,预测 y=1

h {{h}} h小于0.5时,预测 y=0 。

#在训练集上的准确率
y_train_true=np.array([1 if item>0.5 else 0 for item in h(X_train,w).ravel()])
y_train_true
array([1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0])
#训练集上的误差
np.sum(y_train_true==y_train)/X_train.shape[0]
0.9125
#在测试集上的准确率
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
array([1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1])
y_test
array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],dtype=int64)
np.sum(y_p_true==y_test)/X_test.shape[0]
0.95

1.7 试试用Sklearn来解决

此处进行的调整为:采用X_train和y_train进行训练

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train,y_train)
LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LogisticRegression()
#在训练集上的准确率为
clf.score(X_train,y_train)
0.9125

此处进行的调整为:采用X_test和y_test进行训练

#在测试集上却只有0.8
clf.score(X_test,y_test)
0.8

1.8 如何选择超参数?比如多少轮迭代次数好?

#1 利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()
Exam1Exam2Admitted
034.62366078.0246930
130.28671143.8949980
235.84740972.9021980
360.18259986.3085521
479.03273675.3443761
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X=X.values
y=y.values
# 1 划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=1)
X_train.shape,X_test.shape,X_val.shape 
((64, 3), (20, 3), (16, 3))
y_train.shape,y_test.shape,y_val.shape 
((64,), (20,), (16,))
# 2 修改梯度下降算法,为了不改变原有函数的签名,将训练集传给X,y
def grandient(X,y,X_val,y_val,iter_num,alpha):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[]cost_val=[]lst_w=[]for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(X.shape[1]):right=np.multiply(y_pred.ravel(),X[:,j])gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*gradientw=tempcost_lst.append(cost(X,w,y.ravel()))cost_val.append(cost(X_val,w,y_val.ravel()))lst_w.append(w)return lst_w,cost_lst,cost_val
#调用梯度下降算法
iter_num,alpha=6000000,0.001
lst_w,cost_lst,cost_val=grandient(X_train,y_train,X_val,y_val,iter_num,alpha)
plt.plot(range(iter_num),cost_lst,"b-+")
plt.plot(range(iter_num),cost_val,"r-^")
plt.legend(["train","validate"])
plt.show()

2

#分析结果,看看在300万轮时的情况
print(cost_lst[500000],cost_val[500000])
0.24994786329203897 0.18926411883434127
#看看5万轮时测试误差
k=50000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.45636730725628694 0.45732791872411350.7
#看看8万轮时测试误差
k=80000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.40603054170171965 0.394247838217765160.75
#看看10万轮时测试误差
k=100000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.381898564816469 0.363559834652638970.8
#分析结果,看看在300万轮时的情况
k=3000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19780791870188535 0.114326801305738750.85
#分析结果,看看在500万轮时的情况
k=5000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19393055410160026 0.107541811991899470.85
#在500轮时的情况
k=5999999print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19319692059853838 0.106027626172624680.85

1.9 如何选择超参数?比如学习率设置多少好?

#1 设置一组学习率的初始值,然后绘制出在每个点初的验证误差,选择具有最小验证误差的学习率
alpha_lst=[0.1,0.08,0.03,0.01,0.008,0.003,0.001,0.0008,0.0003,0.00001]
def grandient(X,y,iter_num,alpha):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[]for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(X.shape[1]):right=np.multiply(y_pred.ravel(),X[:,j])gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*gradientw=tempcost_lst.append(cost(X,w,y.ravel()))return w,cost_lst

lst_val=[]
iter_num=100000
lst_w=[]
for alpha in alpha_lst:w,cost_lst=grandient(X_train,y_train,iter_num,alpha)lst_w.append(w)lst_val.append(cost(X_val,w,y_val.ravel()))
lst_val
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: divide by zero encountered in logright=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: invalid value encountered in multiplyright=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())[nan,nan,nan,1.302365681883988,0.9807991089640924,0.6863333276415668,0.3635612014705094,0.3942497801600069,0.5169328809489743,0.6448319202310255]
np.array(lst_val)
array([       nan,        nan,        nan, 1.30236568, 0.98079911,0.68633333, 0.3635612 , 0.39424978, 0.51693288, 0.64483192])
lst_val[3:]
[1.302365681883988,0.9807991089640924,0.6863333276415668,0.3635612014705094,0.3942497801600069,0.5169328809489743,0.6448319202310255]
np.argmin(np.array(lst_val[3:]))
3
#最好的学习率为
alpha_best=alpha_lst[3+np.argmin(np.array(lst_val[3:]))]
alpha_best
0.001
#可视化各学习率对应的验证误差
plt.scatter(alpha_lst[3:],lst_val[3:])
<matplotlib.collections.PathCollection at 0x1d1d48738b0>

3

#看看测试集的结果
#取出最好学习率对应的w
w_best=lst_w[3+np.argmin(np.array(lst_val[3:]))]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.72412058][ 0.0504264 ][ 0.0332232 ]]0.8
#查看其他学习率对应的测试集准确率
for w in lst_w[3:]:y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])print(np.sum(y_p_true==y_test)/X_test.shape[0])
0.75
0.75
0.6
0.8
0.75
0.6
0.55

1.10 如何选择超参数?试试调整l2正则化因子

实验4(2) 完成正则化因子的调参,下面给出了正则化因子lambda的范围,请参照学习率的调参,完成下面代码

# 1正则化的因子的范围可以比学习率略微设置的大一些
lambda_lst=[0.001,0.003,0.008,0.01,0.03,0.08,0.1,0.3,0.8,1,3,10]
# 2 代价函数构造
def cost_reg(X,w,y,lambd):#当X(m,n+1),y(m,),w(n+1,1)y_hat=sigmoid(X@w)right1=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())right2=(lambd/(2*X.shape[0]))*np.sum(np.power(w[1:,0],2))cost=-np.sum(right1)/X.shape[0]+right2return cost
def grandient_reg(X,w,y,iter_num,alpha,lambd):y=y.reshape((X.shape[0],1))w=np.zeros((X.shape[1],1))cost_lst=[] for i in range(iter_num):y_pred=h(X,w)-ytemp=np.zeros((X.shape[1],1))for j in range(0,X.shape[1]):if j==0:right_0=np.multiply(y_pred.ravel(),X[:,j])gradient_0=1/(X.shape[0])*(np.sum(right_0))temp[j,0]=w[j,0]-alpha*(gradient_0)else:right=np.multiply(y_pred.ravel(),X[:,j])reg=(lambd/X.shape[0])*w[j,0]gradient=1/(X.shape[0])*(np.sum(right))temp[j,0]=w[j,0]-alpha*(gradient+reg)          w=tempcost_lst.append(cost_reg(X,w,y,lambd))return w,cost_lst
# 3 调用梯度下降算法用l2正则化
iter_num,alpha=100000,0.001
cost_val=[]
cost_w=[]
for lambd in lambda_lst:w,cost_lst=grandient_reg(X_train,w,y_train,iter_num,alpha,lambd)cost_w.append(w)cost_val.append(cost_reg(X_val,w,y_val,lambd))
cost_val
[0.36356132605416125,0.36356157522133403,0.3635621981384864,0.36356244730503007,0.36356493896065706,0.3635711680214138,0.36357365961439897,0.3635985745598491,0.3636608540941533,0.36368576277656284,0.36393475122711266,0.36480480418120226]
# 4 查找具有最小验证误差的索引,从而求解出最优的lambda值
idex=np.argmin(np.array(cost_val))
print("具有最小验证误差的索引为{}".format(idex))
lamba_best=lambda_lst[idex]
lamba_best
具有最小验证误差的索引为00.001
# 5 计算最好的lambda对应的测试结果
w_best=cost_w[idex]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.7241201 ][ 0.05042639][ 0.0332232 ]]0.8
http://www.yayakq.cn/news/695449/

相关文章:

  • 无锡做网站365caiyi学校机构网站建设内容
  • 山东省监理建设协会网站兰州seo排名
  • 绿色农产品网站 模板qq在线登录手机版
  • 动易网站wordpress 获取数据
  • 网站平台建设项目书济南软件制作
  • 做英德红茶的网站湖州建设网站制作
  • 中山网站制作建设建设企业网站专业服务
  • 西安网站建设推广公司哪家好吉林省建设工程质监站网站
  • 专业移动网站建设商中山网站设计服务
  • 可以直接进入网站的正能量连接品牌网站建设k小蝌蚪
  • 上海网站建设的报价wordpress图片主题工业风
  • 网站语言那种好杭州建筑市场信用网
  • 设计微信网站建设wordpress xiu主题5.4
  • 转包网站建设做非法事情网页设计服装网站建设
  • 柳州网站网站怎样获得利润
  • 百度搜索什么关键词能搜到网站海外推广方案
  • 扬州做阿里巴巴的公司网站我需要网站
  • 网站制作北京网站建设公司哪家好做网站备案要处省的电话号码
  • 北京p2p网站建设权威发布封面
  • 电信宽带做网站专业的外贸网站建设公司排名
  • 上海平台网站建设公wordpress文章防采集
  • 关键词站长工具长沙网站建设定制
  • 营销型网站制作公司庆阳做网站的公司
  • 外国人做那个的视频网站购物网站的做
  • 做淘客网站用什么服务器好北京中天人建设工程有限公司网站
  • 网站推广公司网站大连效果图制作公司
  • 做企业网站哪家好wordpress关闭站点
  • 廊坊网站建设搭建网络公司经营范围如何填写
  • 腾讯云网站备案流程图贸泽电子元器件商城
  • 建设个直播网站要多少钱广州优化网站