当前位置: 首页 > news >正文

网站访问统计怎么做网站建设aichengkeji

网站访问统计怎么做,网站建设aichengkeji,wordpress中文视频教程,企业所得税优惠政策最新2023税率序列求和的方法 数列求和公式 等差、等比数列与调和级数 求和的例子 二分检索算法 二分检索运行实例 2 n 1个输入 比较 t 次的输入个数 二分检索平均时间复杂度 估计和式上界的放大法 放大法的例子 估计和式渐近的界 估计和式渐近的界 小结 • 序列求和基本公式:…

序列求和的方法

数列求和公式

等差、等比数列与调和级数

求和的例子

二分检索算法

二分检索运行实例

2 n +1个输入

比较 t 次的输入个数

二分检索平均时间复杂度

估计和式上界的放大法

放大法的例子

估计和式渐近的界

估计和式渐近的界

小结

序列求和基本公式:

等差数列

等比数列

调和级数

估计序列和:

放大法求上界

用积分做和式的渐近的界

应用:计数循环过程的基本运算次数

递推方程与算法分析

递推方程

递推方程的例子

Fibonacci数的存在

Hanoi塔问题

递归算法

分析算法

插入排序

最坏情况下时间复杂度

插入排序:

设基本运算是元素比较,对规模为 n

的输入最坏情况下的时间复杂度 W ( n )

W ( n )= W ( n -1)+ n -1 W (1)=0

解为 W ( n ) = n ( n -1)/2

小结

递推方程的定义及初值

递推方程与算法时间复杂度的关系

Hanoi塔的递归算法 插入排序的迭代算法

迭代法求解递推方程

迭代法

不断用递推方程的右部替换左部

每次替换,随着 n 的降低在和式中

多出一项

直到出现初值停止迭代

将初值代入并对和式求和

可用数学归纳法验证解的正确性

Hanoi 塔算法

插入排序算法

换元迭代

将对 n 的递推式换成对其他变元 k 的递推式

k 直接迭代

将解 (关于 k 的函数) 转换成关于 n 的函数

二分归并排序

MergeSort ( A , p , r )

输入:数组 A [ p r ]

输出:按递增顺序排序的数组 A

1. if p < r

2. then q  ( p+r )/2

3. MergeSort ( A , p , q )

4. MergeSort ( A , q +1, r )

换元

假设 n =2 k , 递推方程如下:

W ( n )=2 W ( n /2)+ n 1

W (1)=0

换元:

W (2 k ) = 2 W (2 k -1 ) + 2 k 1

W (0) = 0

迭代求解

解的正确性-归纳验证

证明 : 下述递推方程的解是 W ( n )= n ( n 1)/2

W ( n )= W ( n 1)+ n 1

W (1)=0

方法:数学归纳法

n =1 W (1)=1 (1 1)/2 = 0

假设对于 *n , *解满足方程,则

W ( n +1)

= W ( n )+ n = n ( n 1)/2 + n

= n [( n 1)/2+1] = n ( n +1)/2

小结

迭代法求解递推方程

直接迭代,代入初值,然后求和

对递推方程和初值进行换元,然

后求和,求和后进行相反换元,

得到原始递推方程的解

验证方法——数学归纳法

差消法化简高阶递推方程

快速排序

假设 A [ p r ] 的元素彼此不等

以首元素 A [1] 对数组 A [ p…r ] 划分 , 使得:

小于 x 的元素放在 A [ p q 1]

大于 x 的元素放在 A [ q +1… r ]

递归对 A [ p q 1] A [ q +1… r ] 排序

工作量: 子问题工作量+划分工作量

输入情况

工作量总和

快速排序平均工作量

假设首元素排好序在每个位置是等

概率的

全部历史递推方程

对于高阶方程应该先化简,然后迭代

差消化简

利用两个方程相减,将右边的项尽可能

消去,以达到降阶的目的

差消化简

迭代求解

小结

对于高阶递推方程先要用差消法化简为一阶方程

迭代求解

递归树

有关基 递归树的概念 本概

递归树是迭代计算的模型 .

递归树的生成过程与迭代过程一致 .

递归树上所有项恰好是迭代之后产

生和式中的项 .

对递归树上的项求和就是迭代后方

程的解.

迭代在递归树中的表示

二层子树的例子

递归树的生成规则

初始,递归树只有根结点 , 其值为 W ( n )

不断继续下述过程:

将函数项叶结点的迭代式 W ( m ) 表示成二

层子树

用该子树替换该叶结点

继续递归树的生成,直到树中无函数项

(只有初值)为止.

递归树生成实例

递归树

对递归树上的量求和

递归树应用实例

求和

方程: T ( n )= T ( n /3)+ T (2 n /3)+ n

递归树层数 k ,每层 O ( n )

******

小结

递归树是迭代的图形表述

递归树的生成规则

如何利用递归树求解递推方程?

主定理及其证明

主定理的应用背景

求解递推方程

T ( n ) = a T ( n / b ) + f ( n )

a 归约后的子问题个数

n/b :归约后子问题的规模

f ( n ) :归约过程及组合子问题的解的

工作量

二分检索: T ( n ) = T ( n /2)+1

二分归并排序: T ( n ) =2 T ( n /2)+ n -1

主定理

迭代

迭代结果

小结

主定理的应用背景

主定理的内容

主定理的证明

主定理的应用

求解递推方程:例1

1 求解递推方程

T ( n ) = 9 T ( n /3) + n

上述递推方程中的

a = 9 b = 3 f ( n ) = n

n log 3 9 = n 2 , f ( n ) = O ( n log 3 9-1 )

相当于主定理的 case1 ,其中 =1.

根据定理得到 T ( n ) = ( n 2 )

求解递推放出:例2

2 求解递推方程

T ( n ) = T (2 n /3) + 1

****求解递推方程:例2

上述递推方程中的

a = 1, b = 3/2, f ( n ) = 1

n log 3/2 1 = n 0 = 1

相当于主定理的

Case2 .

根据定理得到 T ( n ) = ( log n )

条件验证

递归算法分析

不能使用主定理的例子

递归树求解

求和

小结

使用主定理求解递推方程需要

满足什么条件?

主定理怎样用于算法复杂度分

析?

http://www.yayakq.cn/news/568239/

相关文章:

  • 备案号如何绑定多个网站专业的定制型网站建设
  • 合肥网站建设开发电话网站开发参考文献2016
  • 江苏城乡建设局网站通辽企业网站建设
  • 随便编一个公司网站新乡住房与城乡建设厅网站
  • 深圳网站 商城制作多用户网站
  • 网站建设具体工作php网页设计论文
  • 中英文网站建设需要懂英语吗成都公司注册流程及费用
  • 门户网站建设 交流发言网站开发公司合作协议书
  • 国外html5网站欣赏怎样发展网站
  • 网站开发整体制作流程搞笑图片网站源码
  • 企业外贸网站建设哪有做网站
  • 招生网站建设四川省住房与建设厅网站
  • 什么网站广告最多世界十大市场调研公司
  • 江象网站建设借个网站备案号
  • 网站开发软件开发流程网站建设属于技术活吗
  • 郑州网站建设联系方式seo技术有哪些
  • 口碑好的秦皇岛网站建设价格发优惠券网站怎么做
  • 网站一级页面标题怎么做的seo建站外贸
  • 北京网站定制设计开发公司建设工程教育网建设工程类的考试辅导网站
  • 买微单的网站建设网络推广都需要做什么
  • python做网站实例网站建设论文答辩题目
  • 网站品牌建设功能网站建设报价多少钱
  • 专业网站建设公怎么建立和设计公司网站
  • 关于设计的网站贵州企业官网建设
  • 青岛硅谷网站建设公司p2p网站设计
  • 友汇网站建设如何上传网站到云服务器
  • 哪家网站建设公司专业的网站建设
  • 网站改版不换域名国家企业信用系统查询系统
  • 网站内页怎样做优化东阳网站建设价格
  • 江西网站做的好的企业wordpress 迁移