当前位置: 首页 > news >正文

购物网站多少钱企业网站建设开发成本利润多少

购物网站多少钱,企业网站建设开发成本利润多少,男生最喜欢的浏览器,wordpress 会员管理插件自编码说白了就是一个特征提取器,也可以看作是一个降维器。下面找了一张很丑的图来说明自编码的过程。 自编码分为压缩和解码两个过程。从图中可以看出来,压缩过程就是将一组数据特征进行提取, 得到更深层次的特征。解码的过程就是利用之前的…

自编码说白了就是一个特征提取器,也可以看作是一个降维器。下面找了一张很丑的图来说明自编码的过程。

自编码分为压缩和解码两个过程。从图中可以看出来,压缩过程就是将一组数据特征进行提取, 得到更深层次的特征。解码的过程就是利用之前的深层次特征再还原成为原来的数据特征。那么如何保证从压缩到解码两部分,原数据和解码数据保持一致呢?这就是要训练的过程。

如何理解降维?如果压缩的过程是卷积,维度可以根据核的个数变化,特征维度因此而改变。


import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_imagedevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')sample_dir = 'samples'
if not os.path.exists(sample_dir):os.makedirs(sample_dir)
image_size = 784
h_dim = 400
z_dim = 20
num_epochs = 15
batch_size = 128
learning_rate = 1e-3dataset = torchvision.datasets.MNIST(root='../../data',train=True,transform=transforms.ToTensor(),download=True)# Data loader
data_loader = torch.utils.data.DataLoader(dataset=dataset,batch_size=batch_size, shuffle=True)

模型搭建:这里搭建的是一个变分自编码,Variational Autoencoder

那么变分自编码是为了解决什么问题呢? ——- 其主要思想还是希望学习隐层变量,并将其用来表示原始数据,但是它加另一个条件, 即隐层变量能学习原始数据的分布, 并反过来生产一些和原始数据相似的数据(这有啥用?—-可用于图片修复,让图片按训练集的数据分布变化)。

变分自编码 (Variational Autoencoder) 为了让隐层抓住输入数据特性, 而不是简单的输出数据=输入数据,他在隐层中加入随机噪声(单位高斯噪声)(这个过程也叫reparametrize),以确保隐层能较好抽象输入数据特点。

代码中怎么做的呢?

1、编码过程中我们保存了第二层线性层的输出。其中第二层包含有fc2与fc3两部分,他们是并联的。

2、给隐藏层加入随机噪声,作为解码的输入

class VAE(nn.Module):def __init__(self, image_size=784, h_dim=400, z_dim=20):super(VAE, self).__init__()self.fc1 = nn.Linear(image_size, h_dim)self.fc2 = nn.Linear(h_dim, z_dim)self.fc3 = nn.Linear(h_dim, z_dim)self.fc4 = nn.Linear(z_dim, h_dim)self.fc5 = nn.Linear(h_dim, image_size)def encode(self, x):h = F.relu(self.fc1(x))return self.fc2(h), self.fc3(h)def reparameterize(self, mu, log_var):std = torch.exp(log_var/2)eps = torch.randn_like(std)return mu + eps * stddef decode(self, z):h = F.relu(self.fc4(z))return F.sigmoid(self.fc5(h))def forward(self, x):mu, log_var = self.encode(x)z = self.reparameterize(mu, log_var)x_reconst = self.decode(z)return x_reconst, mu, log_var

训练:由于训练中加入了噪声,所以损失值的结构也因此改变。一部分来源于解码内容核原内容的相似度,另一部分是kl_div,具体是什么意义需查看论文。

model = VAE().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# Start training
for epoch in range(num_epochs):for i, (x, _) in enumerate(data_loader):# Forward passx = x.to(device).view(-1, image_size)x_reconst, mu, log_var = model(x)# Compute reconstruction loss and kl divergence# For KL divergence, see Appendix B in VAE paper or http://yunjey47.tistory.com/43reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False)kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())# Backprop and optimizeloss = reconst_loss + kl_divoptimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 10 == 0:print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}" .format(epoch+1, num_epochs, i+1, len(data_loader), reconst_loss.item(), kl_div.item()))with torch.no_grad():# Save the sampled imagesz = torch.randn(batch_size, z_dim).to(device)out = model.decode(z).view(-1, 1, 28, 28)save_image(out, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch+1)))# Save the reconstructed imagesout, _, _ = model(x)x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3)save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png'.format(epoch+1)))

模型训练完成了之后该如何使用这个模型呢?

model.decode()是一个解码的过程,我们给他一个随机的中间特征z就可以输出一个数字图片了。

z = torch.randn(1,z_dim).to(device)
out = model.decode(z)
plt.imshow(out.cpu().data.numpy().reshape(28,28),cmap='gray')
plt.show()

有了随机的一张图片之后,我们把他完整的放入模型中,生成了和输入相似的一张图片,也没看出来是修复了图像......

out,_,_ = model(out) 
plt.imshow(out.cpu().data.numpy().reshape(28,28),cmap='gray')
plt.show()

http://www.yayakq.cn/news/84694/

相关文章:

  • 网站关键词布局wordpress云盘
  • 做团购网站多少钱报考二级建造师官网
  • wordpress企业站被黑wordpress标签的调用代码
  • 关于门户网站建设的整改报告怎么建设免费的网站
  • 调整网站模板大小wordpress网页打开很慢
  • 网站架设方式广告设计策划公司
  • 长宁网站建设优化seo哪些网站可以接单做
  • 做外贸做网站wordpress一件代发
  • zencart网站时间问题镇海区建设工程安监站网站
  • 织梦怎么做企业网站爱美眉网站源码
  • 英雄联盟韩国seo快速排名源码
  • 域名备案完成了怎么建设网站专有网络WordPress
  • 编辑网站绑定 主机名湖南智能网站建设费用
  • 做地方房产网站怎么样聊城网架公司
  • 网站美工做图推荐淘宝客导购网站源码
  • 网站开发技术汇总佛山制作做网站
  • 做网站时 404网页如何指向这么用自己的电脑做网站服务器
  • 工业园区网站模版中学网上做试卷的网站
  • 上海市杨浦区建设小学网站做儿童成长相册模版网站
  • 清溪镇网站建设wordpress搜索功能性能
  • 网站域名注册的相关证书证明文件中山小程序开发
  • 海珠建设网站在线做网站午夜伦理
  • 网站备案软件开发文档编写规范
  • 滁州市公共资源交易中心wordpress最好用的seo
  • 咨询行业网站制作怎样在百度上发布广告
  • 服务器哪些端口可以做网站嘉兴网站建设多少时间
  • 网站开发常用语言全国十大跨境电商平台
  • 深圳网站建设卓企ps怎么做网页制作
  • 动态站 网站地图怎么做乡镇信息公开网站建设制度
  • 举报网站建设公司郑州竞价托管代运营