当前位置: 首页 > news >正文

简单模板网站制作时间网站排名不稳定怎么办

简单模板网站制作时间,网站排名不稳定怎么办,微信开发工具文档,怎么查网站死链RLWE同态加密的明文域 RLWE的加密方案,如BGV、BFV,加密的对象,实际上是分圆多项式环上的一个整系数多项式。而我们在平时接触到的需要加密的数据,如图像或者工资,通常是一个数。所以,在使用RLWE同态加密时…

RLWE同态加密的明文域

RLWE的加密方案,如BGV、BFV,加密的对象,实际上是分圆多项式环上的一个整系数多项式。而我们在平时接触到的需要加密的数据,如图像或者工资,通常是一个数。所以,在使用RLWE同态加密时,需要将数转化为多项式,这就是同态加密的明文编码,或者叫做明文的打包。

打包并不是说将数直接映射到多项式就可以了,我们需要保持打包的同态性质,这样才能使得同态运算的结果保持真正的同态性质。本文主要介绍更适用于加密同态加密的打包方法,系数打包。也就是将剩余环 Z T \mathbb{Z}_T ZT中的元素映射到多项式环 Z T [ x ] / ( x N + 1 ) \mathbb{Z}_T[x]/(x^N+1) ZT[x]/(xN+1)上。

单系数打包

最朴素的思想就是,一个数对应于一个多项式。设需要加密的数为 a a a, 则,我们可以用 a a a构造一个多项式,使得打包是加法同态的。

  1. a a a作为多项式的一个系数,其他的系数随机生成。
  2. a a a切分到多个系数,剩余的系数使用随机数。

方法1

固定位置 i i i,构造的明文多项式的第 i i i个系数等于需要打包的明文 a a a

P = p 0 + p 1 x + p 2 x 2 + ⋯ + p i x i + ⋯ + p N − 1 x N − 1 P=p_0+p_1x+p_2x^2+\cdots+p_ix^i+\cdots+p_{N-1}x^{N-1} P=p0+p1x+p2x2++pixi++pN1xN1,其中 p i = a p_i=a pi=a.

接下来我们证明这种打包是加法同态的。
假设明文 b b b打包成的明文多项式为 Q = q 0 + q 1 x + q 2 x 2 + ⋯ + q i x i + ⋯ + p N − 1 x N − 1 Q=q_0+q_1x+q_2x^2+\cdots+q_ix^i+\cdots+p_{N-1}x^{N-1} Q=q0+q1x+q2x2++qixi++pN1xN1,其中 q i = b q_i=b qi=b.
那么 S = P + Q = ∑ j = 0 N − 1 ( p j + q j m o d T ) x j S=P+Q=\sum_{j=0}^{N-1}(p_j+q_j \mod T)x^j S=P+Q=j=0N1(pj+qjmodT)xj
加法并不会导致多项式的次数增加,所以 S S S的次数为 N − 1 N-1 N1.
所以 S S S的第 i i i个系数 s i ≡ a + b m o d T s_i\equiv a+b \mod T sia+bmodT.
也就是打包是加法同态的。

方法2

a a a切分成随机的 k k k份,然后将这 k k k份作为明文多项式的其中一部分系数。
a = a 0 + a 1 + ⋯ + a k − 1 m o d T a=a_0+a_1+\cdots+a_{k-1} \mod T a=a0+a1++ak1modT.
P = a 0 + a 1 x + ⋯ + a k − 1 x k − 1 + p k x k + p k + 1 x k + 1 + ⋯ + p N − 1 x N − 1 P=a_0+a_1x+\cdots+a_{k-1}x^{k-1}+p_kx^k+p_{k+1}x^{k+1}+\cdots+p_{N-1}x^{N-1} P=a0+a1x++ak1xk1+pkxk+pk+1xk+1++pN1xN1.
同样由于加法不会导致多项式次数增加,从而模 x N + 1 x^N+1 xN+1,所以这样的打包是加法同态的。

相比于方法1,这样打包可以使得当 T T T较小的时候,需要加密的数很大,而且需要的加法次数比较多的时候,能避免溢出,从而保持正确的结果。

SIMD系数打包

SIMD是单指令多数据(Single Instruction Multiple Data)的缩写。对应于打包,也就是将 d d d个数映射为一个多项式, d d d叫做打包的批次大小。SIMD系数打包是单系数打包的一般性推广,也就是单系数打包是打包批次为1时的SIMD打包。

设要加密的数据为 A = ( a 0 , a 1 , a 2 , ⋯ , a d − 1 ) A=(a_0,a_1,a_2,\cdots,a_{d-1}) A=(a0,a1,a2,,ad1),则 P = a 0 + a 1 x + a 2 x 2 + ⋯ + a d − 1 x d − 1 + p d x d + p d + 1 x d + 1 + ⋯ + p N − 1 x N − 1 P=a_0+a_1x+a_2x^2+\cdots+a_{d-1}x^{d-1}+p_dx^d+p_{d+1}x^{d+1}+\cdots +p_{N-1}x^{N-1} P=a0+a1x+a2x2++ad1xd1+pdxd+pd+1xd+1++pN1xN1
这样的打包方式,显然是加法同态的。

代码示例

在OpenFHE中实现了SIMD的系数打包,但是其效率并不是很高。
下面是一个怎么使用系数打包的例子。

/*
OpenFHE test code by zyf.
coefficient packing example of bgv.
*/
#include<iostream>
#include"openfhe.h"
//The functions or classes of OpenFHE are in the namespace lbcrypto
using namespace lbcrypto;
using namespace std;int main(){// set the parameters of bgvCCParams<CryptoContextBGVRNS> parameters;//plaintext modulusparameters.SetPlaintextModulus(536903681);//set the multiplication depthparameters.SetMultiplicativeDepth(4);CryptoContext<DCRTPoly> cryptoContext = GenCryptoContext(parameters);//enable the functions of scheme.cryptoContext->Enable(PKE);cryptoContext->Enable(LEVELEDSHE);//cryptoContext->Enable(ADVANCEDSHE);KeyPair<DCRTPoly> keyPair;//generate keykeyPair = cryptoContext->KeyGen();cryptoContext->EvalMultKeyGen(keyPair.secretKey);//cout<<"ring dimension "<<cryptoContext->GetCryptoParameters()->GetElementParams()->GetRingDimension()<<endl;//original datavector<int64_t> v1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};vector<int64_t> v2 = {-1, -2, -3, 1, 2, 3, 4, 5, 6, 7, 8, 9};//pack the original data to plaintext polynomialPlaintext p1,p2;p1=cryptoContext->MakeCoefPackedPlaintext(v1);p2=cryptoContext->MakeCoefPackedPlaintext(v2);//encryptionauto c1 = cryptoContext->Encrypt(keyPair.publicKey, p1);auto c2 = cryptoContext->Encrypt(keyPair.publicKey, p2);auto sum=c1+c2;//decryptionPlaintext ans_sum;cryptoContext->Decrypt(keyPair.secretKey,sum,&ans_sum);cout<<ans_sum<<endl;
}
http://www.yayakq.cn/news/849066/

相关文章:

  • 江宁区住房与城乡建设局网站360网站怎么做网址链接
  • 1688官网入口优化网站打开速度
  • 大气婚庆网站源码宁夏政务大厅城乡建设厅口网站
  • 网站是怎么建成的可以建站的网站
  • aws的efs可以做网站的什么信誉好的盐城网站建设
  • 基金会网站建设方案引流推广方式
  • 建设厅焊工证查询网站西地那非最佳吃法
  • 网站建设验收要求问答社交网站开发
  • 做网站外贸怎么找客户学校网站建设计入哪个会计科目
  • 兰州网络营销网站四川城乡和建设厅网站
  • 做微信商城网站公司asp.net mvc网站开发之美
  • 泉州网站建设方案优化wordpress 商业主题插件
  • php网站设计网络规划设计师多少分通过
  • 做网站的公司赚钱吗python3 做网站
  • 山西建设监理协会网站桂林论坛网七星区
  • 现在外贸做哪个网站好个人网站的域名注册
  • 注册公司和建网站建设建材网站费用
  • 手机网站建设计wordpress页面调取
  • 宣武青岛网站建设中国建设银行积分查询网站
  • 长沙seo网站推广做中学学中做网站
  • 宁德城乡建设网站免费搭建个人网站
  • 网站兼容性做一个平台网站大概多少钱
  • 空间购买网站龙华网站网页设计
  • 免费网站自己做鄂州网站推广
  • 织梦茶叶网站模板免费下载网站建设行业的前景
  • 建设银行网站一直打不开购物网站页面设计步骤
  • 番禺建设网站公司哪家好熊猫关键词工具官网
  • wordpress最新免费主题下载地址seo的优化原理
  • 凡科建站登录入口官方正版我要自学网首页网站建设
  • 知名网站建设公司电话游戏推广方案