当前位置: 首页 > news >正文

做网站资讯运营织梦备份网站数据

做网站资讯运营,织梦备份网站数据,wordpress 图片地址 数据库,网站title写法消息传递范式 消息函数、聚合函数与更新函数 消息函数接受一个参数 edges,这是一个 EdgeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批边。edges 有 src、 dst 和 data 共3个成员属性, 分别用于访问源节点、目标节点…

消息传递范式

消息函数、聚合函数与更新函数

消息函数接受一个参数 edges,这是一个 EdgeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批边。edgessrcdstdata 共3个成员属性, 分别用于访问源节点、目标节点和边的特征。

聚合函数 接受一个参数 nodes,这是一个 NodeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批节点。nodes 的成员属性 mailbox 可以用来访问节点收到的消息。 一些最常见的聚合操作包括 sum、max、min 等。

更新函数 接受一个如上所述的参数 nodes。此函数对 聚合函数 的聚合结果进行操作, 通常在消息传递的最后一步将其与节点的特征相结合,并将输出作为节点的新特征。

DGL在命名空间 dgl.function 中实现了常用的消息函数和聚合函数作为 内置函数
一般来说,DGL建议 尽可能 使用内置函数,因为它们经过了大量优化,并且可以自动处理维度广播。

内置消息函数可以是一元函数或二元函数。

  • 对于一元函数,DGL支持 copy 函数。
  • 对于二元函数, DGL现在支持 add、 sub、 mul、 div、 dot 函数。

消息的内置函数的命名约定是 u 表示 源 节点v 表示 目标 节点e 表示
这些函数的参数是字符串,指示相应节点和边的输入和输出特征字段名。

关于内置函数的列表,请参见: DGL-Built-in Function
下面表中标识了其中给出的各种消息传递函数以及常见的聚合函数:
在这里插入图片描述

例如,要对源节点的 hu 特征和目标节点的 hv 特征求和, 然后将结果保存在边的 he 特征上,用户可以使用内置函数 dgl.function.u_add_v('hu', 'hv', 'he')。而以下用户定义消息函数与此内置函数等价:

def message_func(edges):return {'he': edges.src['hu'] + edges.dst['hv']}

DGL支持内置的聚合函数 summaxminmean 操作。 聚合函数通常有两个参数,它们的类型都是字符串。一个用于指定 mailbox 中的字段名,一个用于指示目标节点特征的字段名。例如, dgl.function.sum(‘m’, ‘h’) 等价于如下所示的对接收到消息求和的用户定义函数:

import torch as th
import dgl
import dgl.function as fn
def reduce_func(nodes):return {'h': torch.sum(nodes.mailbox['m'], dim=1)}

单独调用逐边计算

在DGL中,也可以在不涉及消息传递的情况下,通过 apply_edges() 单独调用逐边计算。 apply_edges() 的参数是一个消息函数。并且在默认情况下,这个接口将更新所有的边。例如:

 import dgl.function as fngraph.apply_edges(fn.u_add_v('el', 'er', 'e'))

消息传递高级API

对于消息传递, update_all() 是一个高级API。它在单个API调用里合并了消息生成、 消息聚合和节点特征更新,这为从整体上进行系统优化提供了空间。
update_all() 的参数是一个消息函数、一个聚合函数和一个更新函数。
更新函数是一个可选择的参数,用户也可以不使用它,而是在 update_all 执行完后直接对节点特征进行操作。 由于更新函数通常可以用纯张量操作实现,所以DGL不推荐在 update_all 中指定更新函数。例如:

def update_all_example(graph):# 在graph.ndata['ft']中存储结果graph.update_all(fn.u_mul_e('ft', 'a', 'm'),# 消息函数fn.sum('m', 'ft'))# 聚合函数# 在update_all外调用更新函数final_ft = graph.ndata['ft'] * 2return final_ft

update_all函数对应的数学公式为:
在这里插入图片描述

此调用通过将源节点特征 ft 与边特征 a 相乘生成消息 m, 然后对所有消息求和来更新节点特征 ft,再将 ft 乘以2得到最终结果 final_ft。

简单应用

# 边 0->1, 0->2, 0->3, 1->3
u, v = th.tensor([0,1,2,3,3,4,4]), th.tensor([2,0,1,2,5,1,3])
g = dgl.graph((u, v))
# bg = dgl.to_bidirected(g)#无向图g.ndata['x'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征
g.ndata['ft'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征g.edata['a'] = th.ones(g.num_edges(),3,dtype=th.float32)  # 标量整型特征
print(g.ndata)
temp = update_all_example(g)
print('temp:',temp)

执行结果:
在这里插入图片描述
执行结果分析:
在这里插入图片描述

本小节全部代码

"""消息传递范式消息函数 接受一个参数 edges,这是一个 EdgeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批边。
edges 有 src、 dst 和 data 共3个成员属性, 分别用于访问源节点、目标节点和边的特征。聚合函数 接受一个参数 nodes,这是一个 NodeBatch 的实例, 在消息传递时,它被DGL在内部生成以表示一批节点。
nodes 的成员属性 mailbox 可以用来访问节点收到的消息。 一些最常见的聚合操作包括 sum、max、min 等。更新函数 接受一个如上所述的参数 nodes。此函数对 聚合函数 的聚合结果进行操作, 通常在消息传递的最后一步将
其与节点的特征相结合,并将输出作为节点的新特征。DGL在命名空间 dgl.function 中实现了常用的消息函数和聚合函数作为 内置函数。
一般来说,DGL建议 尽可能 使用内置函数,因为它们经过了大量优化,并且可以自动处理维度广播。
""""""
内置消息函数可以是一元函数或二元函数。对于一元函数,DGL支持 copy 函数。
对于二元函数, DGL现在支持 add、 sub、 mul、 div、 dot 函数。
消息的内置函数的命名约定是 u 表示 源 节点, v 表示 目标 节点,e 表示 边。
这些函数的参数是字符串,指示相应节点和边的输入和输出特征字段名。关于内置函数的列表,请参见: DGL-Built-in Function: https://docs.dgl.ai/api/python/dgl.function.html#api-built-in例如,要对源节点的 hu 特征和目标节点的 hv 特征求和, 然后将结果保存在边的 he 特征上,用户可以使用内置函数 dgl.function.u_add_v('hu', 'hv', 'he')。
而以下用户定义消息函数与此内置函数等价。
def message_func(edges):return {'he': edges.src['hu'] + edges.dst['hv']}
""""""
例如,要对源节点的 hu 特征和目标节点的 hv 特征求和, 然后将结果保存在边的 he 特征上,
用户可以使用内置函数 dgl.function.u_add_v('hu', 'hv', 'he')。 而以下用户定义消
息函数与此内置函数等价。
"""
def message_func(edges):return {'he': edges.src['hu'] + edges.dst['hv']}"""
DGL支持内置的聚合函数 sum、 max、 min 和 mean 操作。 聚合函数通常有两个参数,它们的类型都是字符串。
一个用于指定 mailbox 中的字段名,一个用于指示目标节点特征的字段名,
例如, dgl.function.sum('m', 'h') 等价于如下所示的对接收到消息求和的用户定义函数:
"""
import torch as th
import dgl
import dgl.function as fn
def reduce_func(nodes):return {'h': torch.sum(nodes.mailbox['m'], dim=1)}"""单独调用逐边计算
在DGL中,也可以在不涉及消息传递的情况下,通过 apply_edges() 单独调用逐边计算。 
apply_edges() 的参数是一个消息函数。并且在默认情况下,这个接口将更新所有的边。例如:
"""
# import dgl.function as fn
# graph.apply_edges(fn.u_add_v('el', 'er', 'e'))"""消息传递高级API
对于消息传递, update_all() 是一个高级API。它在单个API调用里合并了消息生成、 消息聚合和节点特征更新,
这为从整体上进行系统优化提供了空间。update_all() 的参数是一个消息函数、一个聚合函数和一个更新函数。 
更新函数是一个可选择的参数,用户也可以不使用它,而是在 update_all 执行完后直接对节点特征进行操作。 
由于更新函数通常可以用纯张量操作实现,所以DGL不推荐在 update_all 中指定更新函数。例如:
"""
def update_all_example(graph):# 在graph.ndata['ft']中存储结果graph.update_all(fn.u_mul_e('ft', 'a', 'm'),# 消息函数fn.sum('m', 'ft'))# 聚合函数# 在update_all外调用更新函数final_ft = graph.ndata['ft'] * 2return final_ft"""
此调用通过将源节点特征 ft 与边特征 a 相乘生成消息 m, 然后对所有消息求和来更新节点特征 ft,再将 ft 乘以2得到最终结果 final_ft。
"""
# 边 0->1, 0->2, 0->3, 1->3
u, v = th.tensor([0,1,2,3,3,4,4]), th.tensor([2,0,1,2,5,1,3])
g = dgl.graph((u, v))
# bg = dgl.to_bidirected(g)#无向图g.ndata['x'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征
g.ndata['ft'] = th.ones(g.num_nodes(),3,dtype=th.float32)               # 长度为3的节点特征g.edata['a'] = th.ones(g.num_edges(),3,dtype=th.float32)  # 标量整型特征
print(g.ndata)
temp = update_all_example(g)
print('temp:',temp)
http://www.yayakq.cn/news/453029/

相关文章:

  • 做婚恋网站赚钱吗郑州模板网站设计哪家便宜
  • 网站做a视频在线观看网站关于旅游网站策划书
  • 江苏省建设厅官方网站公式公告宠物网站怎么做
  • 网站建设的主要技术路线网页游戏排行力荐新壹玩
  • 公司核名在哪个网站泉州建站模板源码
  • 网站做三方登陆需要注册公司不启蒙自助建站
  • 在酒吧里做那个视频网站设计网站vcg
  • 扬州市建设厅网站短网址生成器 网址: 生成短网址
  • 网站建设淘宝评价做一个公司的网站应做哪些准备工作
  • 订餐网站建设网站建设ssc源码修复
  • 做PPT的辅助网站做网站后台程序是怎么来的
  • 广州建站公司有哪些wordpress伪静态301
  • 天津 网站备案重庆大渡口网站建设
  • 织梦做网站视频教程我要注册
  • 温州市建设小学学校网站庆阳网络营销
  • 公司做网站需要准备什么软件wordpress主题更换logo
  • 企业微网站与手机微信号wordpress站点
  • 评价校园网站建设范例网店无货源怎么做
  • 化妆培训网站源码重庆网站开发小顶网
  • 网站 .net 多少钱迪奥网络营销方式
  • 衡水建网站费用滁州 来安县建设局网站
  • mysql同一数据库放多少个网站表Wordpress 反馈表单
  • 网站建设大数据正规网站建设推荐
  • 如何做120急救网站阿里云域名注册官网登录
  • 手机网站返回跳转个人门户登录
  • 百度做网站不给FTP密码平面设计基础学什么
  • 做网站用dw还是vs安卓软件制作网站
  • 上海网站设计公司推荐亿企邦网站seo分析案例
  • 网站的基础知识免费推广网站短视频
  • 怎么做网站版面分析猎头公司怎么找客户