当前位置: 首页 > news >正文

php网站框架wordpress远程安装教程

php网站框架,wordpress远程安装教程,前端简历,山西做网站如何选择2 FAST APROXIMATE CONVOLUTIONS ON GRAPHS 在这一章节,我们为这种特殊的的图基础的神经网络模型f(X, A)提供理论上的支持。我们考虑一个多层的图卷积网络(GCN),它通过以下方式进行层间的传播: 这里,是无…

2 FAST  APROXIMATE  CONVOLUTIONS ON GRAPHS

在这一章节,我们为这种特殊的的图基础的神经网络模型f(X, A)提供理论上的支持。我们考虑一个多层的图卷积网络(GCN),它通过以下方式进行层间的传播:

H^{(l+1)} = \sigma (\widetilde{D}^{-1/2} \widetilde{A}(\widetilde{D}^{-1/2} H^{(l)}W^{(l)}) \quad (2)

这里,\widetilde{A} = A+ I_{N}是无向图邻接矩阵加上自己本身。I_{N}是对称矩阵,\widetilde{D_{ii}} = \sum _j\widetilde{A_{ij}},W^{(l)}是层的训练权重矩阵。\sigma (.)表示激活函数,例如ReLu.H^{(l)}\in R^{N*D}l^{th}层的激活矩阵,H^{(0)} = X.在接下来中,我们将会展示,这种规则的传播方式是局部谱域滤波的一阶近似。

2.1 SPECTRAL GRAPH CONVOLUTIONS

我们考虑图上的谱域卷积 : 多维信号x\in R^N,用参数\theta \in R^N定义的傅里叶过滤器g_\theta =diag(\theta ),i.e.:

g_\theta * x = Ug_\theta U^{T}x, \quad (3)

这里U是归一化的图拉普拉斯矩阵的特征向量矩阵,这里L = I_N - D^{-1/2}AD^{-1/2} = U \Lambda U^{T},

对角矩阵是特征值\LambdaU^Tx是x的图傅里叶的转换。我们可以理解g_\theta是拉普拉斯矩阵L的特征值的函数,即g_\theta (\Lambda )。计算公式(3)是非常繁重的计算,因为特征向量的矩阵U的乘法是O(N^2)。并且,在大的图上计算L的特征值分解,其计算量之大以至于无法做到。为了规避在大图上特征值分解的问题,g_{\theta }(\Lambda )近似是切比雪夫多项式K^{th}级截断T_k(x) :

g_\theta (\Lambda )\approx \sum_{k=0}^{K}{\theta_k}^{'}T_k(\widetilde{\Lambda }) \quad (4)

\widetilde{\Lambda } = \frac{2}{\lambda _{max}}\Lambda - I_N\lambda _{max}表示L的最大特征值。\theta ^{'} \in R^K是切比雪夫向量的系数。切比雪夫多项式递归地定义为T_k(x) = 2xT_{(k-1)}(x) - T_{k-2}(x),这里面T_0(x) = 1 , T_1(x) = x

回到我们信号x过滤器

{g_\theta}^{'} * x \approx \sum_{k=0}^{K}{\theta _k}^{'}T_k(\widetilde{L})x,\quad (5)

这里\widetilde{L} = \frac{2}{\lambda_{max} }L - I_N;可以轻易验证(U\Lambda U^{T})^k = U \Lambda ^kU^T。这个表达式是K阶截断的拉普拉斯多项式近似,它依赖于中心节点周围做多K个节点的作用。公式 5的复杂度是O(|\varepsilon |),随着边的数量线性增长。Defferrard et al 使用K阶卷积定义了图上的卷积网络。

2.2 LAYER-WISE LINEAR MODEL

通过公式5,图卷积神经网络可以叠多个卷积层,每一层都是非线性的。现在,如果我们将层的卷积操作K=1,即图谱域拉普拉斯矩阵L的限行函数。

这种一阶的线性方式,我们仍然可以罗列多层的卷积层,这不局限于切比雪夫多项式。我直觉期望这样的模型能够对于点的度数很高的分布(例如,社交网络、引用网络、知识图谱和其他一些真实世界的数据库)的图结构起到减轻过拟合的作用。并且,对于一定的计算资源,这种一阶的layer-wise方式能够建立更深的网络。

这样一种GCN的方式,我们近似\lambda_{max} \approx 2,训练过程中,网络的参数适应如下方式:

g_{\theta^{'}} * x = {\theta _0}^{'}x + {\theta _1}^{'}(L- I_N)x= {\theta _0}^{'}x - {\theta _1}^{'}D^{-1/2}AD^{-1/2}x, \quad (6)

这里2个自由参数\theta _0^{'}\theta _1^{'}。这个过滤器的参数被整个网络共享。多层卷积过滤能够卷积到一个节点的第K层邻居,k就是图神经网络卷积层的层数。

在实际中,限制参数的数量以减少计算(例如矩阵乘法)已解决过拟合的问题,这种优化可以得到如下公式g_\theta *x \approx \theta (I_N + D^{-1/2}AD^{-1/2})x,\quad (7)

一个参数\theta =\theta _0^{'}=-\theta _1^{'}。注意I_N + D^{-1/2}AD^{-1/2}的特征值取值范围在[0,2]。在神经网络里面叠多层这样的操作将导致数值不稳定,以及神经网络梯度的消失。为了有效缓解这个问题,我们将使用再归一化的技巧:I_N + D^{-1/2}AD^{-1/2}->\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}\widetilde{A} = A + I_N\widetilde{D_{ii}} = \sum_{j}\widetilde{A_{ij}}

我们可以将上述的定义真正泛化到一个信号X\in R^{N*C},带有C个输入通道(例如,每一个节点有C维的特征向量),F过滤和特征映射如下:

Z = \widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}X\Theta ,\quad (8)

这里\Theta \in R^{C*F}是过滤矩阵的参数,Z\in R^{N*F}是卷积信号矩阵。这个过滤操作有O(|\varepsilon|FC )的复杂度,\widetilde{A}X是稀疏矩阵和稠密矩阵的乘积。

http://www.yayakq.cn/news/811681/

相关文章:

  • 家庭宽带 做网站沈阳公司网站
  • 浙江省建设信息港的网站wordpress扁平模板下载
  • 上海行业门户网站建设工具门窗网站建设
  • 做一个人网站需要注意什么做网站 图片显示不出来
  • 网站建设公司诺玺网络开原铁岭网站建设
  • 做网站哪家服务器好包头建网站公司哪家强
  • 网站建设收费标准不一天眼查在线查询系统
  • .net网站开发流程北京建网站找哪个公司
  • 网站建设概要设计怎么写山东省工程造价信息网官网
  • 松江网站建设公司婚纱网站开发的必要性
  • 网站制作公司汉狮网络个人网站建设作用
  • 石家庄市建设网站高端网站建设设计公司有哪些
  • 大兴德艺网站建设网站怎么挂广告
  • 做h的动漫在线观看网站建设网站建站
  • 响应式网站和营销型网站网页设计制作课程表
  • 仿站软件ps临摹图片做网站的图片犯法吗
  • 洛阳酒店网站开发大全网站定位授权开启权限怎么做
  • 网站建设开发徐州网站二次开发
  • 如何快速模仿一个网站最新上市新手机
  • 神华集团两学一做登陆网站单位如何做网站宣传
  • 班级网站模板下载如何开设一个网站
  • 数据分析网站开发宁波网站排名优化费用
  • 河北省住房和城乡建设厅 网站建设银行网站色调
  • 可以和朋友合资做网站吗吉安网站建设公司
  • 网站改名 备案西安网站制作模板
  • 网页设计作品集优化系统是什么意思
  • 福建建设工程设计备案网站免费logo设计网址
  • 公司网站建设案例教程怎么做属于自己的域名网站
  • 深圳外包网站公司网吧设计装饰公司
  • 电子商务与网站建设实践论文网站开发工具设备要求