当前位置: 首页 > news >正文

免费移动网站模板电子商务网站建设投资预算

免费移动网站模板,电子商务网站建设投资预算,做淘宝客网站要不要备案,光泽网站建设wzjseo强化学习当中最难的两个点是: 1.reward delay; 2.agent的行为会影响到之后看到的东西,所以agent要学会探索世界; 关于强化学习的不同类型,可以分为以下三种: 一种是policy based:可以理解为它是…

强化学习当中最难的两个点是:
1.reward delay;
2.agent的行为会影响到之后看到的东西,所以agent要学会探索世界;

关于强化学习的不同类型,可以分为以下三种:
一种是policy based:可以理解为它是去学习一个很强的actor,由actor去指导下一步的行动;
一种是value-based:学习一个好的critic,这个critic其实就是价值函数,由价值函数去指导做下一步的行动;
还有一种是当下最流行的二者结合的方法叫actor+critic,也是PPO 用的方法;
在这里插入图片描述

policy based

在这里插入图片描述
首先我们用神经网络去学习一个actor,他需要根据环境观察到的state(obervation)去得到action的output;
加下来,我们要判断这个action好不好,靠的是环境反馈的reward;
对于一次的游戏体验而已,reward是每次action累计的return的总和;
在这里插入图片描述
但是,我们知道游戏具有随机性,每次的整个游戏过程我们记录为T(s1,a1,r1…);
哪怕我们使用同一个actor,由于游戏本身的随机性T也是不一样的;
但是不同的actor得到的T的概率和倾向性肯定是不一样的;
比如说如果你的actor是见到敌人就呆住,那么你的T大概率就是敌人一出现你就挂了;
所以我们不能拿单次游戏的reward作为此actor的reward,我们要进行多次游戏,这就好比在T的分布中进行采样;N次采样取平均作为这个actor的reward;
在这里插入图片描述
接下来我们的目标是优化actor的参数去最大化游戏反馈的reward;
在这里插入图片描述
注意Trajactery对应得reward跟待优化的参数没关系,他是环境的反馈,所以可不可导无所谓;
在这里插入图片描述
在这里插入图片描述
这里要注意R(T)是某个trajactory完成后的reward,而不是某个action的reward,这个也很好理解;
在这里插入图片描述
关于这里为什么要取log的解释是,不同的action采样到的频次不一样,模型会提升采样到的多的action的概率,哪怕reward没有很高,所以要除以概率本身,这样子本来比较高概率的action的grad就会变小
在这里插入图片描述
注意R(T)如果都是正值应该不会有问题,也就意味着每个action都会被激励,只是激励有大有小,但是如果说采样过程中有个action没有采样到,不知道action a的reward是多少,这就会导致action a的概率比较低,所以最好给reward减去一个bias,这个bias是我们自己设计的。这样reward有正有负之后,可以去掉采样不均匀带来的一些影响
在这里插入图片描述
所以整个policy based RL的整体流程就是:现有一个初始化参数的actor,然后去sample(其实就是跟环境交互的过程)获取路径、行动、反馈,再拿上面三个去训练model,更新参数,其实log后面那部分和我们正常的深度学习网络一样的,(input就是s,label就是action a)只是前面会乘以整个路径的reward的系数,也就是把reward作用在这个actor上;
在这里插入图片描述
在这里插入图片描述
如果我们的enviroments和reward是model的话,可以直接训练;但如果不是,不能微分的话,就用policy gradient硬train一发;
在这里插入图片描述
这里的critic其实就是价值函数;
在这里插入图片描述
如何衡量价值函数好不好?很简单,价值函数的衡量越接近实际的reward越好;
在这里插入图片描述
我们需要给每一个action合理的reward;上述的同一个trajectory里面的每个action都是相同reward显然不合理,一个action的reward首先跟以往历史的action的reward无关,其次随时间会递减reward的影响;下图中的advantage function是相对于其他action,在当前actor采用本action的credit;
在这里插入图片描述
关于on policy,也就是采样数据=》更新model=>采样数据=》更新model的循环;
因为我们每次要根据trajectory最终的reward去计算每个action的credit,所以要等到一批数据采集完才能更新,当前的数据一旦更新完model就不能在用了,因为它只适用于当前的policy model,更新后policy model就变了;所以这个过程很繁琐耗时间;
off policy的意思就是我们训练的model和我们采集数据的model不是同一个model,我们可以随意选取一个actor去采集数据(大量数据),分布的事情可以靠分布之间的变换解决(关于这个变换后面的视频没有具体看,下次可以补上)
在这里插入图片描述
我们观察数据的actor的分布和实际train的actor的分布不能差太多,差太多以下近似公式会不成立
在这里插入图片描述
上图最后一项是待优化的函数:顾名思义:当前actor根据s采取的action的概率乘以对应的credit,我们希望其越大越好;

上面说到,我们不希望采样数据的分布和训练的actor分布差别太大,那么就需要用到限制,TRPO是额外加出来的限制,不好训练,用的少,PPO就是把限制加入到优化函数里面去了;然后关于beta的值是个动态调整的值,我们会自己设一个LKL最大最小值,超过最大值,就调小beta,反之亦然;这里要注意的是,KL计算的不是参数之间的距离,而是behaivor之间的距离;通用采样数据的s和a就可以计算;

在这里插入图片描述
PPO
在这里插入图片描述
PPO2的加了个clip来做,意思就是看图:如果A>0是正激励,就希望P越大越好,但是也不要太大,如果A<0是负激励,就希望P越小越好,但是也不要太小;
在这里插入图片描述
PPO就是紫色的线,可以看到PPO算法在RL中算是非常稳定和性能好的;
在这里插入图片描述

http://www.yayakq.cn/news/119379/

相关文章:

  • 汾阳网站建设wordpress注册登录插件
  • 霸州做网站的教育局网站群建设方案
  • 设计师做网站的流程怎样做艾条艾柱网站
  • wordpress站点logo多大合适外管局网站做延期收汇报告
  • 企业网站推广营销做外贸上什么网站
  • 百度网站下拉排名网络设计属于什么专业
  • 怎么做轴承网站微信小程序登录流程
  • 网站延迟加载我要建个人网站
  • 外贸网站seo优化站长工具搜一搜
  • 兰州新区规划建设局网站怀化职院网站
  • 第三方网站开发优缺点wordpress get header
  • 天津企业模板建站wordpress如何添加注册登录界面
  • 江西个人网站备案做论坛电子商务网站开发期末考试
  • 中国万网轻云服务器 如何发布网站c2c模式在我国开始于1999年的
  • 正规网站建设方案详细中国做网站正邦
  • 开发一个卖东西的网站多少网站建设优化广告流量
  • 北京网站建设 fim企业网站建设相关书籍
  • 昆明app开发制作seo秘籍优化课程
  • 湖口网站建设wordpress主体功能开发
  • 红色php企业网站模板下载苏州网站建设软件
  • 做外贸网站需要注册公司吗静态网站怎么更新
  • 做网站的软件多少钱免费注册域名的方法
  • 建设网络道德教育网站的有效措施专业ppt制作价格
  • 虚拟主机网站空间wordpress问答系统
  • 网站设计 价格机加工外贸网站
  • 温岭网站开发微信电脑版下载官网
  • 昆明做网站找天度网络营销策略案例分析
  • 建设网站简单的需要多少天叮当app制作平台登录
  • 建筑企业网站有哪些山东响应式网站建设
  • 网站建设 海豚弯绥德网站建设设计