当前位置: 首页 > news >正文

惠东东莞网站建设手机网站建设视频

惠东东莞网站建设,手机网站建设视频,南昌哪个公司做网站好,wordpress 文章前空格李代数的引出: 在优化问题中去解一个旋转矩阵,可能会有一些阻碍,因为它对加法导数不是很友好(旋转矩阵加上一个微小偏移量可能就不是一个旋转矩阵),因为旋转矩阵本身还有一些约束条件,那样再求…

李代数的引出:

在优化问题中去解一个旋转矩阵,可能会有一些阻碍,因为它对加法导数不是很友好(旋转矩阵加上一个微小偏移量可能就不是一个旋转矩阵),因为旋转矩阵本身还有一些约束条件,那样再求导的过程中可能会破坏要优化的矩阵是旋转矩阵的本质条件,所以这里引入了一个乘法导数,即本章提到的左扰动或右扰动。
参考文献:https://www.cnblogs.com/dzyBK/p上/13961868.html

上一章我们知道旋转矩阵构成了特殊正交群 S O ( 3 ) SO(3) SO(3),变换矩阵构成了特殊欧式群 S E ( 3 ) SE(3) SE(3)

的引出:
这里我们简单叙述不做深入讨论。群是一种集合加上一种运算的代数结构。而李群是一种群,李群是指具有连续(光滑)性质的群,例如特殊正交群 S O ( 3 ) SO(3) SO(3)和特殊欧式群 S E ( 3 ) SE(3) SE(3),每个李群都有对应的李代数。

李代数的引出:
这里我们简单叙述不做深入讨论。李代数反应了李群的导数(局部)性质,在李群的正切空间上。而李群通过对数映射到李代数,李代数通过指数映射到李群。

经过推导,旋转矩阵对应的李代数就是旋转向量(3维)。变换矩阵对应的李代数是6维向量,平移在前,旋转在后。

使用李代数的一大动机是进行优化,而在优化过程中导数是非常必要的信息。

Baker-Campbell-Hausdorff公式的引出
l n ( e x p ( ϕ 1 ∧ ) e x p ( ϕ 2 ∧ ) ) ≈ { J l ( ϕ 2 ) − 1 ϕ 1 + ϕ 2 , if  ϕ 1 is small J r ( ϕ 1 ) − 1 ϕ 2 + ϕ 1 , if  ϕ 2 is small ln(exp(\phi_1^{\wedge})exp(\phi_2^{\wedge})) \approx \begin{cases} J_l(\phi_2)^{-1}\phi_1+\phi_2, & \text{if $\phi_1$ is small} \\[2ex] J_r(\phi_1)^{-1}\phi_2+\phi_1, & \text{if $\phi_2$ is small} \end{cases} ln(exp(ϕ1)exp(ϕ2)) Jl(ϕ2)1ϕ1+ϕ2,Jr(ϕ1)1ϕ2+ϕ1,if ϕ1 is smallif ϕ2 is small

BCH公式可以告诉我们当李代数发生了小量变化,旋转矩阵对应的变化,有利于计算出李代数导数,然而这个公式并不是万能的,用BCH线性近似来对李代数求导仍然有比较复杂的 J r J_r Jr,
所以下面我们使用扰动模型来对李代数求导,推导如下:
∂ ( R p ) ∂ φ = lim ⁡ φ → 0 e x p ( φ ∧ ) e x p ( ϕ ∧ ) p − e x p ( ϕ ∧ ) p φ ≈ lim ⁡ φ → 0 ( 1 + φ ∧ ) e x p ( ϕ ∧ ) p − e x p ( ϕ ∧ ) p φ = lim ⁡ φ → 0 φ ∧ R p φ = lim ⁡ φ → 0 − ( R p ) ∧ φ φ = − ( R p ) ∧ \dfrac{\partial(Rp)}{\partial\varphi} = \lim_{\varphi \to 0} \frac{exp(\varphi^{\wedge})exp(\phi^{\wedge})p-exp(\phi^{\wedge})p}{\varphi} \\ \approx \lim_{\varphi \to 0} \frac{(1+\varphi^{\wedge})exp(\phi^{\wedge})p-exp(\phi^{\wedge})p}{\varphi} \\ = \lim_{\varphi \to 0} \frac{\varphi^{\wedge}Rp}{\varphi} = \lim_{\varphi \to 0} \frac{-(Rp)^{\wedge}\varphi}{\varphi}=-(Rp)^{\wedge} φ(Rp)=φ0limφexp(φ)exp(ϕ)pexp(ϕ)pφ0limφ(1+φ)exp(ϕ)pexp(ϕ)p=φ0limφφRp=φ0limφ(Rp)φ=(Rp)
第2行使用到 e x e^x ex的泰勒展开公式。
第3行使用到了公式 a ∧ b = − b ∧ a a^{\wedge}b=-b^{\wedge}a ab=ba

同理, S E ( 3 ) SE(3) SE(3)上也有对应的扰动求导公式,这里不展开叙述了。

相似变换群与李代数(单目视觉)
由于单目的尺度不确定性,如果在单目SLAM中使用SE(3)表示位姿,那么由于尺度不确定性与尺度漂移,整个SLAM过程中的尺度会发生变化,这在 S E ( 3 ) SE(3) SE(3)中未能体现出来。因此,在单目情况下一般会显示地把尺度因子表达出来。用数学语言来说,对于位于空间的点p,在相机坐标系下要经过一个相似变换,而非欧式变换。
与SO(3)与SE(3)相似,相似变换亦对矩阵乘法构成群,称为相似变换群Sim(3)。
Sim(3)也有对应的李代数sim(3),他是一个7维向量 ζ \zeta ζ,它的前6维与se(3)相同,最后多了一项 σ \sigma σ

写到最后,这一章偏理论,实际在写代码的时候我们会用ceses、g2o等库很方便直接计算出优化后的位姿。所以并不需要自己手动给出李代数的导数。有的话后续再分解。

http://www.yayakq.cn/news/198192/

相关文章:

  • 网站开发学历要求空包网网站怎么做的
  • 旅游网站建设规划报告怎么写ps网站参考线怎么做
  • 上海营销型网站代理付运费送东西的网站怎么做6
  • 网站推广的方案设计怎么写php国内外发展现状
  • 原创网站开发流程如何查询网站打开速度
  • 营销型网站建设系统wordpress数据库发文章
  • wordpress中国网站模板装修设计软件网页版
  • 网站建设技术分类no.7 wordpress 破解
  • 电子商务网站开发目的和意义唐山网站建设学徒
  • 男女做床上网站制作网页的图片
  • 给别人做网站用什么东北网站建设
  • 琼海网站建设上海做响应式网站的公司
  • 合肥 网站平台建设公司工程建设动态管理网站
  • 黑山网站制作公司电大企业网站建设论文范文
  • 高校教学网站建设网站设计注册怎么做
  • 展示形网站开发wordpress添加网址导航页面
  • 中小企业网站建设需要注意什么wordpress 神箭手
  • 山东网站建设app网络口碑营销名词解释
  • 公司网站管理制定的作用企业网站优化暴肃湖南岚鸿很好
  • 建设一个网站的好处门户网站开发介绍
  • 模板网站和定仿团购网站模板
  • h5网站页面河北seo网站优化公司
  • 宣城建设网站php购物网站搜索栏怎么做
  • 牡丹江网站推广手机网站设计哪家好
  • 如何做网站推深圳哪家网站建设
  • 做淘宝客优惠券网站还是APP赚钱加强主流网站集群传播能力建设
  • 国内自助建站网店装修设计与制作用什么软件
  • 织梦网站搬家教程wordpress图片压缩软件
  • 架构图在什么网站可以做洛阳霞光做网站公司
  • 水果电商网站建设相关文献一个人做网站好难