当前位置: 首页 > news >正文

《30天网站建设实录》湛江市建设教育协会学校网站

《30天网站建设实录》,湛江市建设教育协会学校网站,自适应网站建设服务哪家好,网站建设资质优化和深度学习的关系 优化是最小化损失函数,而深度学习的目标是在给定有限数据量的情况下寻找合适的模型,分别对应着训练误差和泛化误差;需要注意过拟合; 优化面临的挑战(求解数值解) 局部最小值&#…
  1. 优化和深度学习的关系
  • 优化是最小化损失函数,而深度学习的目标是在给定有限数据量的情况下寻找合适的模型,分别对应着训练误差和泛化误差;
  • 需要注意过拟合;
  1. 优化面临的挑战(求解数值解)
  • 局部最小值:当优化问题的数值解接近局部最优值的时候,目标函数解的梯度接近或者变为0,通过迭代获得的数值解可能仅使目标函数局部最优,而不是全局最优,一定程度的噪声会使参数跳出局部最小值,这是小批量随机梯度下降的有利特性之一,此时小批量上梯度的自然变化能够将参数从局部最小资中跳出;
  • 鞍点:定义为梯度为0但是既不是全局最小值也不是局部最小值的点,尽管不是最小值,但是优化可能会停止,假设输入是k维向量,假设在0梯度处的Hessian矩阵的k个特征值均为正,此时局部最小值,均为负,为局部最大值,有正有负为鞍点;
  • 梯度消失
  1. 凸性
  • 凸集:对于任意的 a , b ∈ X a,b\in X a,bX,连接 a , b a,b a,b的线段也位于 X X X,则集合 X X X是凸集,数学化表示,对于任意 λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1],有 λ a + ( 1 − λ ) b ∈ X \lambda a + (1-\lambda) b\in X λa+(1λ)bX,例如实数集,两个凸集的交集也是凸集;
  • 凸函数:对于所有 x , x ′ ∈ X , λ ∈ [ 0 , 1 ] x,x'\in X,\lambda\in [0,1] x,xX,λ[0,1],有 λ f ( x ) + ( 1 − λ ) f ( x ′ ) ≥ f ( λ x + ( 1 − λ ) x ′ ) \lambda f(x) + (1-\lambda)f(x') \geq f(\lambda x + (1-\lambda)x') λf(x)+(1λ)f(x)f(λx+(1λ)x);
  • 詹森不等式:凸性定义的推广 ∑ i α i f ( x i ) ≥ f ( ∑ i α i x i ) , ∑ i α i = 1 \sum_i\alpha_if(x_i)\geq f(\sum_i\alpha_i x_i),\sum_i\alpha_i=1 iαif(xi)f(iαixi),iαi=1;
  • 凸函数的性质:凸函数的局部极小值是全局极小值

i. 特征值和特征向量, A v = λ v Av=\lambda v Av=λv,其中 v v v是特征向量, λ \lambda λ是特征值;例如对于 A = [ 2 1 2 3 ] A = \begin{bmatrix} 2 & 1\\ 2 & 3\end{bmatrix} A=[2213],他的特征值是 4 , 1 4,1 4,1对应的两个特征向量是 [ 1 2 ] \begin{bmatrix} 1\\ 2\end{bmatrix} [12] [ 1 − 1 ] \begin{bmatrix} 1 \\ -1\end{bmatrix} [11]
ii. 求解特征值和特征向量: ( A − λ I ) v = 0 (A-\lambda I)v = 0 (AλI)v=0,所以 ( A − λ I ) (A-\lambda I) (AλI)不可逆,也就是 d e t ( A − λ I ) = 0 det(A-\lambda I)= 0 det(AλI)=0,即可解得特征值
iii. 延续上面的例子,特征向量组成的矩阵 W = [ 1 1 − 1 2 ] W=\begin{bmatrix}1 & 1\\-1 & 2\end{bmatrix} W=[1112],特征值组成的矩阵 ∑ = [ 1 0 0 4 ] \sum=\begin{bmatrix}1 & 0\\0 & 4\end{bmatrix} =[1004],可得 A W = W ∑ AW=W\sum AW=W,而且 W W W是可逆的,所以等式两边同乘 W − 1 W^{-1} W1得到 A = W ∑ W − 1 A=W\sum W^{-1} A=WW1
iv. 一些良好的性质: A n = W ∑ n W − 1 A^n = W\sum^n W^{-1} An=WnW1,也就是对应一个矩阵的乘方进行特征值分解,只需要将特征值进行同样的n次方即可,此时n需要时正数;对于矩阵的求逆, A − 1 = W ∑ − 1 W − 1 A^{-1}=W\sum^{-1}W^{-1} A1=W1W1,可以看到对矩阵的逆进行特征值分解,直接对特征值求逆即可;矩阵的行列式等于矩阵的特征值的乘积 d e t ( A ) = λ 1 ⋯ λ n det(A) = \lambda_1\cdots \lambda_n det(A)=λ1λn;矩阵的秩等于非0特征值的个数;
v. https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/eigendecomposition.html

http://www.yayakq.cn/news/782262/

相关文章:

  • 怎么为网站网页注册免费网址莒县建设局门户网站
  • 大连建设工程网站优化细节怎么做
  • 海报制作网站免费在线葡京在线葡京
  • 深圳市网站制作2022网络游戏排行榜前十名
  • 建设网站的效果目的及其功能asp.net 网站修改发布
  • 企业网站建设主要包括哪些内容长沙营销网站建设公司
  • 怎样做音视频宣传网站WordPress和shopipfy
  • 杭州网站网站建设seo与网站建设的关联
  • 学校网站制作平台单页网站定义
  • wordpress教程下载网站主题app推广地推接单网
  • 中山网站建设技术关于做展厅的网站
  • emlog做企业网站高效利用js的代码库
  • 多终端响应式网站2345浏览器网址
  • 网站制作昆山产品建站工具
  • iis 网站设置wordpress成长记录网站模版
  • 做网站需要哪些钱百度指数有什么参考意义
  • 电商运营 网站运营百度大全下载
  • 发布网站域名设置建设单位网站设计
  • 返回json数据的网站深圳市西特塔网站建设工作室
  • wordpress全站静太化做国外电影网站
  • 网站建设在线推广山西做网站运营的公司
  • 网上商城网站系统足球梦网站建设的基本思路
  • 购买空间后怎么上传网站wordpress模板自媒体
  • 长春企业网站建设公司买卖域名的网站好
  • 做天猫网站价格网站分享正能量
  • 网上做环评立项的网站是哪个黑龙江高端网站建设
  • 公司找人做网站需要什么建站工具指北
  • 唐山网站定制长沙网站建设商城
  • 播放视频网站怎么做网站提升收录
  • 网站建设规划书范文5000字阜新网站制作