当前位置: 首页 > news >正文

网站开发技术的背景织梦广告网站模板免费下载

网站开发技术的背景,织梦广告网站模板免费下载,网站维护工程师工资,专业制作门户型网站大家好,我是带我去滑雪! 判断肺部是否发生病变可以及早发现疾病、指导治疗和监测疾病进展,以及预防和促进肺部健康,定期进行肺部评估和检查对于保护肺健康、预防疾病和提高生活质量至关重要。本期将利用相关医学临床数据结合逻辑回…

      大家好,我是带我去滑雪!

      判断肺部是否发生病变可以及早发现疾病、指导治疗和监测疾病进展,以及预防和促进肺部健康,定期进行肺部评估和检查对于保护肺健康、预防疾病和提高生活质量至关重要。本期将利用相关医学临床数据结合逻辑回归判断病人肺部是否发生病变,其中响应变量为group(1表示肺部发生病变,0表示正常),特征变量为ESR(表示红细胞沉降率)、CRP(表示C-反应蛋白)、ALB(表示白蛋白)、Anti-SSA(表示抗SSA抗体)、Glandular involvement(表示腺体受累)、gender(表示性别)、c-PSA(cancer-specific prostate-specific antigen)、CA 15-3(Cancer Antigen 15-3)、TH17(Th17细胞)、ANA(代表抗核抗体)、CA125(Cancer Antigen 125)、LDH(代表乳酸脱氢酶)。下面开始使用逻辑回归进行肺部病变判断。

(1)导入相关模块与数据

import pandas as pd

import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import cohen_kappa_score#导入包
import numpy as np
from scipy.stats import logistic
import matplotlib.pyplot as plt
titanic = pd.read_csv('filename1.csv')
titanic#导入数据

输出结果:

data.Ageimpute.data.ESR..mean.impute.data.CRP..mean.impute.data.ALB..mean.impute.data.Anti.SSA..median.impute.data.Glandular.involvement..median.impute.data.Gender..median.impute.data.c.PSA..mean.impute.data.CA153..mean.impute.data.TH17..mean.impute.data.ANA..median.impute.data.CA125..mean.impute.data.LDH..mean.data.group
06721.0000004.81000038.6926610000.3000003.5000010.33000013.000000212.2104930
17833.00000012.08991641.1000000000.61093122.400007.465353117.500000485.0000000
26924.0000002.25000042.7000000000.3000005.400008.02000004.360000236.0000000
37143.00000021.80000039.2000000000.30000011.110005.50000016.700000166.0000000
46920.0000002.43000047.6000003000.3000006.930004.31000003.520000223.0000000
.............................................
9546340.2749142.37000040.3000002000.4300006.100006.56000007.720000234.0000000
9556827.0000003.52000041.0000003000.3200007.520004.78000017.150000254.0000000
9566140.27491412.08991640.7000000000.61093112.463031.79000019.392344161.0000000
9576027.00000035.40000038.3000000000.2000007.680005.70000009.290000256.0000000
9586830.0000002.28000044.4000000000.2000005.320004.43000004.710000172.0000000

959 rows × 14 columns

(2)数据处理

X = titanic.iloc[:,:-1]
y = titanic.iloc[:,-1]
X=pd.get_dummies(X,drop_first = True)
X

(3)划分训练集与测试集

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
X_train, X_test, y_train, y_test =  train_test_split(X,y,test_size=0.2,stratify=None, random_state=0)#划分训练集和测试集

(4)拟合逻辑回归

model =  LogisticRegression(C=1e10)
model.fit(X_train, y_train)

model.intercept_    #模型截距
model.coef_       #模型回归系数

输出结果:

array([[ 0.03899236,  0.00458312,  0.000863  , -0.10140358, -0.09681747,0.74167081,  0.56011254,  0.24636358,  0.0226635 , -0.02681392,0.4987412 , -0.01932326,  0.00211805]])

(5)使用逻辑回归测试集进行评价分类准确率

model.score(X_test, y_test)

输出结果:

0.6822916666666666

(6)测试集预测所有种类的概率

prob = model.predict_proba(X_test)
prob[:5]

输出结果:

array([[0.71336774, 0.28663226],[0.34959506, 0.65040494],[0.91506198, 0.08493802],[0.24008149, 0.75991851],[0.55969043, 0.44030957]])

(7)模型预测

pred = model.predict(X_test)
pred[:5]#计算测试集的预测值,展示前五个值

输出结果:

array([0, 1, 0, 1, 0], dtype=int64)

(8)计算混淆矩阵

table = pd.crosstab(y_test, pred, rownames=['Actual'], colnames=['Predicted'])
table

输出结果:

Predicted01
Actual
09922
13932

(9)计算基于混淆矩阵诸多评价指标 

print(classification_report(y_test, pred, target_names=['yes', 'no']))

输出结果:

                precision    recall  f1-score   supportyes       0.72      0.82      0.76       121no       0.59      0.45      0.51        71accuracy                           0.68       192macro avg       0.65      0.63      0.64       192
weighted avg       0.67      0.68      0.67       192

(10)绘制ROC曲线

from scikitplot.metrics import plot_roc
plot_roc(y_test, prob)
x = np.linspace(0, 1, 100)
plt.plot(x, x, 'k--', linewidth=1)
plt.title('ROC Curve (Test Set)')#画ROC曲线
plt.savefig("E:\工作\硕士\博客\squares1.png",
            bbox_inches ="tight",
            pad_inches = 1,
            transparent = True,
            facecolor ="w",
            edgecolor ='w',
            dpi=300,
            orientation ='landscape')

输出结果:

 

 需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/1E59qYZuGhwlrx6gn4JJZTg?pwd=2138
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

http://www.yayakq.cn/news/766362/

相关文章:

  • 高中做信息技术题网站地方网站怎么做的
  • wordpress 关闭google字体百度搜索结果优化
  • 网站设计公司如何做好网站建设百度权重9的网站
  • 在线网站建设哪家好郑州高端网站建设怎么样
  • 淘宝做促销的网站利尔化学股票最新消息
  • 巨腾网站建设wordpress开启静态网页
  • 昆明做网站的个人网站登录验证码不显示
  • 用wordpress建站一个人可以吗wordpress默认编辑器不好用
  • 普通电脑怎么做网站服务器郑州通告最新
  • 网站建设步骤详解wordpress the7数据库
  • 杭州seo相关网站微信社群营销
  • 网站二级页怎么做建培网
  • 建设银行北海分行网站拓客最有效方案
  • 长沙专业个人做网站哪家好公司制作网站流程
  • 石家庄网站建设哪家便宜网站首页设计教程
  • 江苏住房城乡建设部网站外链论坛
  • 长沙企业网站开发深圳企业招聘信息最新招聘信息
  • 有做a50期货的网站朝阳淘宝网站建设
  • 帮企业建网站步骤wordpress性能太差
  • Paas网站建设关键词批量调词软件
  • 网站百度知道2014 网站建设
  • 网站从建设到上线流程图凡客诚品 v官网
  • 知名网站设计欣赏杭州外贸公司
  • 佳木斯企业网站建设检察院加强网站建设
  • 如何学好网站开发开发板在null不可用
  • 网站开发流行吗logo在线设计制作工具
  • 规划营销型的网站结构分销渠道
  • 岑巩网站建设企业网站内容运营
  • 网站建设最好的书籍是学做面食最好的网站
  • 泰州泛亚信息做网站怎么样安徽省住房建设工程信息网站