当前位置: 首页 > news >正文

做网站开发实习生怎么样哪些网站可以做邀请函

做网站开发实习生怎么样,哪些网站可以做邀请函,浙江省建设监理协会官方网站,深圳谷歌seo培训班🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目录 环境步骤环境设置数据准备工具方法模型设计模型训练模型效果展示 总结与心得体会 上周已经简单的了解了ACGAN的原理,并且不经实践的编写了部分…
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

目录

  • 环境
  • 步骤
    • 环境设置
    • 数据准备
    • 工具方法
    • 模型设计
    • 模型训练
    • 模型效果展示
  • 总结与心得体会


上周已经简单的了解了ACGAN的原理,并且不经实践的编写了部分代码,这周复现一下真正的ACGAN

环境

Pytorch: 2.3.1+cu121
Nvidia GTX 4090

步骤

环境设置

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_imagefrom torch.utils.data import DataLoader
from torch.autograd import Variable
import numpy as npdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 全局参数
n_epochs = 200
batch_size = 64
lr = 0.0002
b1 = 0.5
b2 = 0.999
n_cpu = 8
latent_dim = 100
n_classes = 10
img_size = 32
channels = 1
sample_interval = 400

数据准备

# 创建中间采样图片的文件夹
import os
os.makedirs('images', exist_ok=True)
# 配置数据集
os.makedirs('data/mnist', exist_ok=True)
dataloader = DataLoader(datasets.MNIST('data/mnist',train=True,download=True,transform=transforms.Compose([transforms.Resize(img_size),transforms.ToTensor(),transforms.Normalize([0.5], [0.5])]),),batch_size=batch_size,shuffle=True,
)

工具方法

# 权重初始化函数
def weights_init_normal(m):classname = m.__class__.__name__if classname.find('Conv') != -1:torch.nn.init.normal_(m.weight.data, 0.0, 0.02)elif classname.find('BatchNorm2d') != -1:torch.nn.init.normal_(m.weight.data, 1.0, 0.02)torch.nn.init.constant_(m.bias.data, 0.0)# 日志函数 因为使用了jupyter notebook环境,长时间的任务日志无法直接查看,于是需要打印到文件
import logging
import sys
import datetimedef init_logger(filename, logger_name):'''@brief:initialize logger that redirect info to a file just in case we lost connection to the notebook@params:filename: to which file should we log all the infologger_name: an alias to the logger'''# get current timestamptimestamp = datetime.datetime.utcnow().strftime('%Y%m%d_%H-%M-%S')logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(name)s {%(filename)s:%(lineno)d} %(levelname)s - %(message)s',handlers=[logging.FileHandler(filename=filename),logging.StreamHandler(sys.stdout)])# Testlogger = logging.getLogger(logger_name)logger.info('### Init. Logger {} ###'.format(logger_name))return logger# Initialize
my_logger = init_logger("./ml_notebook.log", "ml_logger")# 生成函数的结果保存
def sample_image(n_row, batches_done):"""保存从0到n_classes的生成数字的图像风格"""# 采样噪声z = torch.randn((n_row**2, latent_dim), device=device)# 为n行生成标签从0到n_classeslabels = torch.tensor([num for _ in range(n_row) for num in range(n_row)], device=device)gen_imgs = generator(z, labels)save_image(gen_imgs.data.cpu(), 'images/%d.png' % batches_done, nrow=n_row, normalize=True)

模型设计

# 生成器
class Generator(nn.Module):def __init__(self):super().__init__()# 标签嵌入self.label_emb = nn.Embedding(n_classes, latent_dim)# 计算上采样前的初始大小self.init_size = img_size // 4# 第一层线性层self.l1 = nn.Sequential(nn.Linear(latent_dim, 128*self.init_size**2))# 卷积层self.conv_blocks = nn.Sequential(nn.BatchNorm2d(128),nn.Upsample(scale_factor=2),nn.Conv2d(128, 128, 3, stride=1, padding=1),nn.BatchNorm2d(128, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Upsample(scale_factor=2),nn.Conv2d(128, 64, 3, stride=1, padding=1),nn.BatchNorm2d(64, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(64, channels, 3, stride=1, padding=1),nn.Tanh(),)def forward(self, noise, labels):# 标签嵌入到噪声中gen_input = torch.mul(self.label_emb(labels), noise)# 通过第一层线性层out = self.l1(gen_input)# 整形out = out.view(out.shape[0], 128, self.init_size, self.init_size)# 卷积生成图像img = self.conv_blocks(out)return img
# 判别器
class Discriminator(nn.Module):def __init__(self):super().__init__()# 判别器块生成函数def discriminator_block(in_filters, out_filters, bn=True):"""返回每个判别器层"""block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]if bn:block.append(nn.BatchNorm2d(out_filters, 0.8))return block# 卷积层self.conv_blocks = nn.Sequential(*discriminator_block(channels, 16, bn=False),*discriminator_block(16, 32),*discriminator_block(32, 64),*discriminator_block(64, 128),)# 下采样后,图像的宽高ds_size = img_size // 2 ** 4# 输出层self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, n_classes), nn.Softmax())def forward(self, img):out = self.conv_blocks(img)out = out.view(out.shape[0], -1)validity = self.adv_layer(out)label = self.aux_layer(out)return validity, label# 模型初始化# 损失函数
adversarial_loss = nn.BCELoss()
auxiliary_loss = nn.CrossEntropyLoss()# 初始化生成器和判别器
generator = Generator().to(device)
discriminator = Discriminator().to(device)# 初始化权重
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

模型训练

# 训练# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))for epoch in range(n_epochs):for i, (imgs, labels) in enumerate(dataloader):batch_size = imgs.shape[0]# 图像是 真实的 标签valid = torch.ones((batch_size, 1), requires_grad=False, device=device)# 图像是 生成的 标签fake = torch.zeros((batch_size, 1), requires_grad=False, device=device)real_imgs = imgs.to(device)labels = labels.to(device)# 训练生成器optimizer_G.zero_grad()# 采样噪声和标签作为生成器的输入z = torch.randn((batch_size, latent_dim), device=device)gen_labels = torch.randint(0, 1, (batch_size,), device=device)# 生成一批图像gen_imgs = generator(z, gen_labels)# 损失度量 生成器欺骗判别器的能力validity, pred_label = discriminator(gen_imgs)g_loss = 0.5 * (adversarial_loss(validity, valid) + auxiliary_loss(pred_label, gen_labels))g_loss.backward()optimizer_G.step()# 训练判别器optimizer_D.zero_grad()# 真实图像的损失real_pred, real_aux = discriminator(real_imgs)d_real_loss = 0.5 * (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels))# 生成图像的损失fake_pred, fake_aux = discriminator(gen_imgs.detach())d_fake_loss = 0.5 * (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, gen_labels))# 判别器的总损失d_loss = 0.5 * (d_real_loss + d_fake_loss)# 计算判别器的准确率pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)gt = np.concatenate([labels.data.cpu().numpy(), gen_labels.data.cpu().numpy()], axis=0)d_acc = np.mean(np.argmax(pred, axis=1) == gt)d_loss.backward()optimizer_D.step()if i % 100 == 0:my_logger.info("[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]" % (epoch, n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item()))batches_done = epoch * len(dataloader) + iif batches_done % sample_interval == 0:sample_image(n_row=10, batches_done=batches_done)

训练过程

模型效果展示

刚开始训练
训练到最后

总结与心得体会

通过对模型的复现,发现我之前对判别器的理解有偏差,如果在判别器的输入中插入分类信息,等于是将答案直接给了判别器,生成的结果反而不会太好。还有一个和我预想的不一样的地方,在生成器中,将标签嵌入到特征向量使用了矩阵乘法,而没有直接使用concatenate操作。

http://www.yayakq.cn/news/191313/

相关文章:

  • 1688网站可以做全屏吗最新新闻热点及观点
  • 做一个信息网站多少钱网址短链接生成
  • 建设网站用凡科怎么样兰州有互联网公司嘛
  • 武进网站建设咨询阿里与电信签订合作协议
  • 医疗行业网站怎么做wordpress function.php
  • 安徽网站建设外贸网站建设与管理教程视频教程
  • 网站制作前必须做的事情有哪些个人网站备案名字
  • 西安网站公司比较大的地方门户网站资讯该怎么做
  • 宜昌网站制作公司亿腾百度博客网站模板
  • 荆州市城市建设投资开发有限公司网站厦门网站建设哪家专业
  • 监控摄像头做直播网站wordpress手机菜单分行
  • 各类网站网站建设的目标是什么wordpress中文源码
  • wap网站制作视频教程伪静态网站网站 目录写入权限
  • 洪山区建设局网站安卓手机app下载软件
  • 网站建设空格怎么打wordpress文章不显示自定义字段
  • 一线城市网站建设费用高中小企业网站建设策划
  • 在那个网站上做设计赚钱网站域名备案服务
  • 品牌建站自主网站
  • 重庆网站建设 红旗河沟深圳网站建设制作报价
  • 邯郸网站建设选哪家好广告投放平台排名
  • 卖视频会员个人网站怎么做个人网站备案代理
  • 网站设计怎么算间距临城网络营销怎么做
  • 青木源网站建设公司数据分析师要考什么证
  • 阿里云服务器的网站备案流程望野古诗王绩
  • 网站建设公司的企业特色有哪些徐州网站开发
  • 龙岗附近网站开发公司店面设计模板
  • 泉州网站建设方案维护移动网络
  • 网站建设 外包 厦门wordpress json
  • 网站开发工具论文赣州市开发小程序
  • 网站建设合同内容与结构官方网站怎么推广