郑州网站搜索排名护卫神 安装wordpress
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图
【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具Datax实现数据同步
1、准备工作:
- JDK(1.8 以上,推荐 1.8)
 - Python(23 版本都可以)
 - Apache Maven 3.x(Compile DataX)(手动打包使用,使用 
tar包方式不需要安装) 
| 主机名 | 操作系统 | IP 地址 | 软件包 | 
| MySQL-1 | CentOS 7.4 | 192.168.1.1 | jdk-8u181-linux-x64.tar.gz datax.tar.gz | 
| MySQL-2 | CentOS 7.4 | 192.168.1.2 | 
2、安装 JDK:
下载地址:Java Archive Downloads - Java SE 8(需要创建 Oracle 账号)
[root@MySQL-1 ~]# ls anaconda-ks.cfg jdk-8u181-linux-x64.tar.gz [root@MySQL-1 ~]# tar zxf jdk-8u181-linux-x64.tar.gz [root@DataX ~]# ls anaconda-ks.cfg jdk1.8.0_181 jdk-8u181-linux-x64.tar.gz [root@MySQL-1 ~]# mv jdk1.8.0_181 /usr/local/java [root@MySQL-1 ~]# cat <<END >> /etc/profile export JAVA_HOME=/usr/local/java export PATH=$PATH:"$JAVA_HOME/bin" END [root@MySQL-1 ~]# source /etc/profile [root@MySQL-1 ~]# java -version
- 因为 
CentOS 7上自带Python 2.7的软件包,所以不需要进行安装。 
3、Linux 上安装 DataX 软件
[root@MySQL-1 ~]# wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz [root@MySQL-1 ~]# tar zxf datax.tar.gz -C /usr/local/ [root@MySQL-1 ~]# rm -rf /usr/local/datax/plugin/*/._*
- 当未删除时,可能会输出:
 [/usr/local/datax/plugin/reader/._drdsreader/plugin.json] 不存在. 请检查您的配置文件.
验证:
[root@MySQL-1 ~]# cd /usr/local/datax/bin [root@MySQL-1 ~]# python datax.py ../job/job.json
输出:
2021-12-13 19:26:28.828 [job-0] INFO JobContainer - PerfTrace not enable! 2021-12-13 19:26:28.829 [job-0] INFO StandAloneJobContainerCommunicator - Total 100000 records, 2600000 bytes | Speed 253.91KB/s, 10000 records/s | Error 0 records, 0 bytes | All Task WaitWriterTime 0.060s | All Task WaitReaderTime 0.068s | Percentage 100.00% 2021-12-13 19:26:28.829 [job-0] INFO JobContainer - 任务启动时刻 : 2021-12-13 19:26:18 任务结束时刻 : 2021-12-13 19:26:28 任务总计耗时 : 10s 任务平均流量 : 253.91KB/s 记录写入速度 : 10000rec/s 读出记录总数 : 100000 读写失败总数 : 0
4、DataX 基本使用
查看 streamreader \--> streamwriter 的模板:
[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r streamreader -w streamwriter
输出:
 DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.Please refer to the streamreader document:https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md Please refer to the streamwriter document:https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md Please save the following configuration as a json file and  usepython {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.{"job": {"content": [{"reader": {"name": "streamreader", "parameter": {"column": [], "sliceRecordCount": ""}}, "writer": {"name": "streamwriter", "parameter": {"encoding": "", "print": true}}}], "setting": {"speed": {"channel": ""}}}
} 
 
根据模板编写 json 文件
 [root@MySQL-1 ~]# cat <<END > test.json
{"job": {"content": [{"reader": {"name": "streamreader", "parameter": {"column": [        # 同步的列名 (* 表示所有){"type":"string","value":"Hello."},{"type":"string","value":"河北彭于晏"},], "sliceRecordCount": "3"     # 打印数量}}, "writer": {"name": "streamwriter", "parameter": {"encoding": "utf-8",     # 编码"print": true}}}], "setting": {"speed": {"channel": "2"         # 并发 (即 sliceRecordCount * channel = 结果)}}}
} 
 
输出:(要是复制我上面的话,需要把 # 带的内容去掉)
5、安装 MySQL 数据库
分别在两台主机上安装:
[root@MySQL-1 ~]# yum -y install mariadb mariadb-server mariadb-libs mariadb-devel   
[root@MySQL-1 ~]# systemctl start mariadb												# 安装 MariaDB 数据库
[root@MySQL-1 ~]# mysql_secure_installation												# 初始化	
NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDBSERVERS IN PRODUCTION USE!  PLEASE READ EACH STEP CAREFULLY!Enter current password for root (enter for none):	     	# 直接回车
OK, successfully used password, moving on...
Set root password? [Y/n] y                       	 	 	# 配置 root 密码
New password: 
Re-enter new password: 
Password updated successfully!
Reloading privilege tables..... Success!
Remove anonymous users? [Y/n] y                			 	# 移除匿名用户... skipping.
Disallow root login remotely? [Y/n] n            		 	# 允许 root 远程登录... skipping.
Remove test database and access to it? [Y/n] y 		     	# 移除测试数据库... skipping.
Reload privilege tables now? [Y/n] y             	     	# 重新加载表... Success!
 
1)准备同步数据(要同步的两台主机都要有这个表)
MariaDB [(none)]> create database `course-study`;
Query OK, 1 row affected (0.00 sec)MariaDB [(none)]> create table `course-study`.t_member(ID int,Name varchar(20),Email varchar(30));
Query OK, 0 rows affected (0.00 sec)
 

 因为是使用 DataX 程序进行同步的,所以需要在双方的数据库上开放权限:
grant all privileges on *.* to root@'%' identified by '123123';
flush privileges;
 
2)创建存储过程:
DELIMITER $$
CREATE PROCEDURE test()
BEGIN
declare A int default 1;
while (A < 3000000)do
insert into `course-study`.t_member values(A,concat("LiSa",A),concat("LiSa",A,"@163.com"));
set A = A + 1;
END while;
END $$
DELIMITER ;
 

 3)调用存储过程(在数据源配置,验证同步使用):
call test();
 
6、通过 DataX 实 MySQL 数据同步
1)生成 MySQL 到 MySQL 同步的模板:
[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r mysqlreader -w mysqlwriter
{"job": {"content": [{"reader": {"name": "mysqlreader",							# 读取端"parameter": {"column": [], 								# 需要同步的列 (* 表示所有的列)"connection": [{"jdbcUrl": [], 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接用户"username": "", 							# 连接密码"where": ""									# 描述筛选条件}}, "writer": {"name": "mysqlwriter",							# 写入端"parameter": {"column": [], 								# 需要同步的列"connection": [{"jdbcUrl": "", 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接密码"preSql": [], 								# 同步前. 要做的事"session": [], "username": "",								# 连接用户 "writeMode": ""								# 操作类型}}}], "setting": {"speed": {"channel": ""										# 指定并发数}}}
}
 
2)编写 json 文件:
[root@MySQL-1 ~]# vim install.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}
 
3)验证
[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py install.json
 
输出:
2021-12-15 16:45:15.120 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-15 16:45:15.120 [job-0] INFO  StandAloneJobContainerCommunicator - Total 2999999 records, 107666651 bytes | Speed 2.57MB/s, 74999 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 82.173s |  All Task WaitReaderTime 75.722s | Percentage 100.00%
2021-12-15 16:45:15.124 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-15 16:44:32
任务结束时刻                    : 2021-12-15 16:45:15
任务总计耗时                    :                 42s
任务平均流量                    :            2.57MB/s
记录写入速度                    :          74999rec/s
读出记录总数                    :             2999999
读写失败总数                    :                   0
 
你们可以在目的数据库进行查看,是否同步完成。
- 上面的方式相当于是完全同步,但是当数据量较大时,同步的时候被中断,是件很痛苦的事情;
 - 所以在有些情况下,增量同步还是蛮重要的。
 
7、使用 DataX 进行增量同步
使用 DataX 进行全量同步和增量同步的唯一区别就是:增量同步需要使用 where 进行条件筛选。(即,同步筛选后的 SQL)
1)编写 json 文件:
[root@MySQL-1 ~]# vim where.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","where": "ID <= 1888","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}
 
- 需要注意的部分就是:
where(条件筛选) 和preSql(同步前,要做的事) 参数。 
2)验证:
[root@MySQL-1 ~]# python /usr/local/data/bin/data.py where.json
 
输出:
2021-12-16 17:34:38.534 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-16 17:34:38.534 [job-0] INFO  StandAloneJobContainerCommunicator - Total 1888 records, 49543 bytes | Speed 1.61KB/s, 62 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.002s |  All Task WaitReaderTime 100.570s | Percentage 100.00%
2021-12-16 17:34:38.537 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-16 17:34:06
任务结束时刻                    : 2021-12-16 17:34:38
任务总计耗时                    :                 32s
任务平均流量                    :            1.61KB/s
记录写入速度                    :             62rec/s
读出记录总数                    :                1888
读写失败总数                    :                   0
 
目标数据库上查看:
 3)基于上面数据,再次进行增量同步:
主要是 where 配置:"where": "ID > 1888 AND ID <= 2888"						# 通过条件筛选来进行增量同步
 
同时需要将我上面的 preSql 删除(因为我上面做的操作时 truncate 表)
 

