当前位置: 首页 > news >正文

南京博学建设集团网站万网注册域名就可以做网站吗

南京博学建设集团网站,万网注册域名就可以做网站吗,市场营销方案案例范文,广州发布最新通知《Towards Black-Box Membership Inference Attack for Diffusion Models》 Abstract 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection不需要访问内部模型组件的新型黑盒攻击方法展示了在评估 DALL-E …

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model’s variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E’s API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

image-20240714153919091

image-20240714154002587

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2xlogp(Xt))+dWt,t[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x, the unbiasedness of the denoised image is not guaranteed.

image-20240715221809436

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]
A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse

image-20240715201536961

image-20240715212401773
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}_t}\epsilon,\quad \hat{z}=\Phi_{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment’s setup in previous papers [5, 18].
target modelDDIMStable Diffusion
version《Are diffusion models vulnerable to membership inference attacks?》original:stable diffusion-v1-5 provided by Huggingface
datasetCIFAR10/100,STL10-Unlabeled,Tiny-Imagenetmember set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T10001000
k10010
baseline methods[5]Are diffusion models vulnerable to membership inference attacks?: SecMIA[18]An efficient membership inference attack for the diffusion model by proximal initialization.[28]Membership inference attacks against diffusion models
publicationInternational Conference on Machine LearningarXiv preprint2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals
http://www.yayakq.cn/news/258092/

相关文章:

  • 东莞网络网站建设注册公司网站多少钱
  • 网站建设网站设计做网站怎么赚钱广告
  • 企业seo网络推广seo课程培训入门
  • 网站图片多大一个人网站运营怎么做
  • 网站多久被百度收录青州做网站
  • 淮南市重点工程建设管理局网站手机网站建设需求分析
  • 威海自适应网站建设搜狗网站收录入口
  • 沂水网站制作潍坊网站收录
  • 海口网站seo做旅游项目用哪家网站好
  • 怎样自己做企业的网站淘宝推广怎么推
  • 网站 电信已备案 联通网站推广的方法
  • 那个网站直接回做二手发电机没有域名怎么访问网站
  • 企业网站备案资料二级学院网站建设
  • 做会所在哪个网站推广天津市建设工程信息网官网首页
  • 现在还有人做网站吗建筑招工信息网
  • 牡丹江建设厅网站广饶网站定制
  • 佛山seo广州网站优化方案
  • 通过RP如何做网站长春网站建设方案详细
  • 国内优秀个人网站欣赏门户网站有
  • 安徽网新科技怎么建设网站网盘搜索网站如何做的
  • 建站之星模板好吗软件开发流程的具体内容
  • 医院管理系统网站模板wordpress微信接口
  • 三星做号网站常州新北区有做淘宝网站策划的吗
  • 高端开发网站哪家专业wordpress 文章是否有标签
  • 网络平台开展职业培训网站建设网站建设公司广州
  • 专业的南京网站建设修改wordpress主体
  • 企业网站如何设计福州抖音seo
  • 华为公司网站建设方案模板下载网站创建服务公司
  • 分销商城网站建设crm管理系统介绍
  • 扬州市建设局网站佛山个性化网站建设