当前位置: 首页 > news >正文

17做网站广州新塘网站模板 自适应

17做网站广州新塘,网站模板 自适应,在家做十字绣兼职网站,wordpress 菜单 外链1.Flink中的KeyBy 在Flink中,KeyBy作为我们常用的一个聚合类型算子,它可以按照相同的Key对数据进行重新分区,分区之后分配到对应的子任务当中去。 源码解析 keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 Key…

1.Flink中的KeyBy

在Flink中,KeyBy作为我们常用的一个聚合类型算子,它可以按照相同的Key对数据进行重新分区,分区之后分配到对应的子任务当中去。
源码解析
keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 KeyedStream(键控流),KeyedStream 可以认为是“分区流”或者“键控流”,它是对 DataStream 按照 key 的一个逻辑分区。
所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。
在这里插入图片描述
KeyBy是如何实现分区的呢

Flink中的KeyBy底层其实就是通过Hash实现的,通过对Key的值进行Hash,再做一次murmurHash,取模运算。
再通过Job的并行度,就能获取每个Key应该分配到那个子任务中了。

在这里插入图片描述

2.分组和分区在Flink中的区别

分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。
数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。
分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作(如聚合、窗口计算等)。
key值相同的数据将进入同一个分组中。
注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。

3.代码示例

package com.flink.DataStream.Aggregation;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class FlinkKeyByDemo {public static void main(String[] args) throws Exception {//TODO 创建Flink上下文执行环境StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();//设置并行度为1streamExecutionEnvironment.setParallelism(1);//设置执行模式为批处理streamExecutionEnvironment.setRuntimeMode(RuntimeExecutionMode.BATCH);//TODO source 从集合中创建数据源DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.fromElements("hello word", "hello flink");//TODO 方式一 匿名实现类SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator1 = dataStreamSource.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String s, Collector<String> collector) throws Exception {String[] s1 = s.split(" ");for (String word : s1) {collector.collect(word);}}}).map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String s) throws Exception {Tuple2<String, Integer> aa = Tuple2.of(s, 1);return aa;}})/*** keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 KeyedStream(键控流)* KeyedStream 可以认为是“分区流”或者“键控流”,它是对 DataStream 按照 key 的一个逻辑分区* 所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。* *//*** 分组和分区在Flink 中具有不同的含义和作用:* 分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。*      数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。* 分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作 (如聚合、窗口计算等)。*      key 值相同的数据将进入同一个分组中。* 注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。* */.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {return stringIntegerTuple2.f0;}}).sum(1);//TODO 方式二 Lamda表达式实现SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator2 = dataStreamSource.flatMap((String s, Collector<String> collector) -> {String[] s1 = s.split(" ");for (String word : s1) {collector.collect(word);}}).returns(Types.STRING).map((String word) -> {return Tuple2.of(word, 1);})//Java中lamda表达式存在类型擦除.returns(Types.TUPLE(Types.STRING, Types.INT)).keyBy((Tuple2<String, Integer> s) -> {return s.f0;}).sum(1);//TODO sinkoutputStreamOperator1.print("方式一");outputStreamOperator2.print("方式二");//TODO 执行streamExecutionEnvironment.execute("Flink KeyBy Demo");}
}
http://www.yayakq.cn/news/111116/

相关文章:

  • 玩具网站 下载如何建立学校网站
  • wordpress安装百度站长资源平台网站兼容怎么调
  • 宁国市城乡与住房建设网站门头设计效果图网站
  • 地方门户类网站知识库管理系统
  • 蚌埠市网站建设公司一家专门做特卖的网站
  • 电子商务网站建设期末试题08答案做金融网站
  • 镇江市建设局网站越城区住房和城乡建设局网站
  • 网站建设与网页设计百度文库江苏省建设教育协会网站首页
  • 杭州网站设计 site莱西网站网站建设
  • 宁波网站搭建公司定制郑州市城乡建设局官网
  • 贵州手机网站建设网站标准尺寸
  • 微信保修网站开发源代码管理公司网站建设
  • 网站建设需要用什么书企查查网站
  • 泉州自助建站软件做搜狗手机网站快
  • 站长交易网东莞网络做推广公司
  • 怎么做 在线电影网站wordpress aike主题
  • 网站后台会员管理wordpress教程网59iwp
  • 免费中文网站模板互联网应用技术学什么
  • 前端网站开发教程北京互联网网站建设价格
  • 创业公司用wordpress东莞关键词优化平台
  • 青岛网站建设东橙品牌设计建设银行网站明细多长时间
  • 2013电子商务网站建设百度官网网站登录
  • 纪检网站建设方案图片动画制作
  • 南昌制作网站的公司吗计算机专业论文网站开发
  • 电子商务网站建设外包服务怎么让网站排名下降
  • 开发小网站一般多少钱一个山东 网站备案
  • 中国空间站最新消息新闻自贡网站制作
  • 最棒的网站建设如何建立一个自己的网站啊
  • 建什么网站 做 cpa广州企业网站建设哪家好
  • 做蛋糕的英文网站wordpress 经过天数