当前位置: 首页 > news >正文

雏鸟app网站推广wordpress去除版本号

雏鸟app网站推广,wordpress去除版本号,景德镇网站开发,seo网站推广费用一、引言 归并排序是一种高效且稳定的排序方法,而逆序对问题是算法领域的一个经典问题,本文教大家如何实现归并排序,以及如何使用归并排序去结果逆序对问题 二、归并排序 归并排序思想 分解:将待排序的数组分成两半&#xff0c…

一、引言

归并排序是一种高效且稳定的排序方法,而逆序对问题是算法领域的一个经典问题,本文教大家如何实现归并排序,以及如何使用归并排序去结果逆序对问题

二、归并排序

归并排序思想

  1. 分解:将待排序的数组分成两半,递归地对这两半进行归并排序,直到每个子数组的大小为1(此时已经是有序的)。

  2. 合并:将两个已排序的子数组合并成一个新的有序数组。合并过程通常使用两个指针,分别指向两个子数组的当前元素,比较这两个元素并将较小的元素放入结果数组中,直到所有元素都被合并。

我们借助递归可以很好的实现数据的分解和合并,我们可以借助代码区理解归并排序


#include <stdio.h>#define MAXSIZE 100int merge[MAXSIZE]; void Merge(int a[], int left, int right, int middle) {int i = left; int j = middle + 1;         int k = left; while (i <= middle && j <= right) {if (a[i] <= a[j]) {merge[k++] = a[i++]; }else {merge[k++] = a[j++];}}while (i <= middle) {merge[k++] = a[i++];}while (j <= right) {merge[k++] = a[j++];}for (i = left; i <= right; i++) {a[i] = merge[i];}
}void Mergesort(int a[], int left, int right) {if (left < right) {int middle = (left + right) / 2;Mergesort(a, left, middle); Mergesort(a, middle + 1, right); Merge(a, left, right, middle); }
}void show(int a[], int n) {for (int i = 0; i < n; i++) {printf("%d ", a[i]);}printf("\n");
}int main() {int a[MAXSIZE];int n;printf("请输入待排关键字个数(n>0): ");scanf_s("%d", &n);printf("请依次输入关键字的数据值:\n");for (int i = 0; i < n; i++) {scanf_s("%d", &a[i]);}Mergesort(a, 0, n - 1); printf("该组数据排序后的结果: ");show(a, n);printf("该组数据逆序对的个数: %d\n", count); printf("========================================================================================================================");return 0;
}

这段代码便是归并排序的核心代码,其中分解通过递归的方式进行,而合并,我们则定义了一个函数 

void Merge(int a[], int left, int right, int middle) {int i = left; int j = middle + 1;         int k = left; while (i <= middle && j <= right) {if (a[i] <= a[j]) {merge[k++] = a[i++]; }else {merge[k++] = a[j++];count += (middle - i + 1); }}while (i <= middle) {merge[k++] = a[i++];}while (j <= right) {merge[k++] = a[j++];}for (i = left; i <= right; i++) {a[i] = merge[i];}
}

该函数我们可以实现两个有序函数的合并,合并之后还是有序函数 

那么我们如何保证我们要合并的两个数组原本是有序的呢?这就需要我们探究一下递归的本质了

我们通过如下递归,最后会将数组分解为一个一个的单独的数字

void Mergesort(int a[], int left, int right) {if (left < right) {int middle = (left + right) / 2;Mergesort(a, left, middle); Mergesort(a, middle + 1, right); Merge(a, left, right, middle); }
}

 这些一个一个的数字就是我们最早的有序数组,之后我们通过有序数组产生的数组,也都是有序的,经过我们的拆分和合并,最后就会产生一个合并好的最终的有序数组

这样归并排序的全过程就结束了

三、逆序对

1.何为逆序对

逆序对是指在一个序列中,两个元素的相对位置与它们的大小关系不一致。具体来说,对于一个序列中的两个元素 a[i]a[i] 和 a[j]a[j],如果 i<j i<j 且 a[i]>a[j] a[i]>a[j],那么就称这个对 (a[i],a[j])(a[i],a[j]) 为一个逆序对。

例如,在序列 [3,1,2][3,1,2] 中:

  • 逆序对有 (3,1)(3,1) 和 (3,2)(3,2),因为 33 在 11 和 22 之前,但 33 的值大于它们。
  • 而 (1,2)(1,2) 不是逆序对,因为 1<21<2。

逆序对的数量在计算排序算法的复杂度、分析数组的有序性等方面有重要应用。在某些排序算法中,逆序对的数量可以用来衡量数组的“无序程度”。

简而言之,就是前面的数比后面的数大,那么这两个数的下标就构成了逆序对

2.如何用归并思想求取逆序对

代码如下


#include <stdio.h>#define MAXSIZE 100int count = 0; 
int merge[MAXSIZE]; void Merge(int a[], int left, int right, int middle) {int i = left; int j = middle + 1;         int k = left; while (i <= middle && j <= right) {if (a[i] <= a[j]) {merge[k++] = a[i++]; }else {merge[k++] = a[j++];count += (middle - i + 1); }}while (i <= middle) {merge[k++] = a[i++];}while (j <= right) {merge[k++] = a[j++];}for (i = left; i <= right; i++) {a[i] = merge[i];}
}void Mergesort(int a[], int left, int right) {if (left < right) {int middle = (left + right) / 2;Mergesort(a, left, middle); Mergesort(a, middle + 1, right); Merge(a, left, right, middle); }
}void show(int a[], int n) {for (int i = 0; i < n; i++) {printf("%d ", a[i]);}printf("\n");
}int main() {int a[MAXSIZE];int n;printf("请输入待排关键字个数(n>0): ");scanf_s("%d", &n);printf("请依次输入关键字的数据值:\n");for (int i = 0; i < n; i++) {scanf_s("%d", &a[i]);}Mergesort(a, 0, n - 1); printf("该组数据排序后的结果: ");show(a, n);printf("该组数据逆序对的个数: %d\n", count); printf("========================================================================================================================");return 0;
}

 其实逆序对的求取,我们只需要在我们归并排序的基础上加入几行代码便可,其中最核心的是下面的一段

   int i = left; int j = middle + 1;         int k = left; while (i <= middle && j <= right) {if (a[i] <= a[j]) {merge[k++] = a[i++]; }else {merge[k++] = a[j++];count += (middle - i + 1); }}

 当我们的右边数组要比左边数组的数小时,便构成了逆序对的条件,但是这样的依次移动会产生几个逆序对呢,我们可以推断一下

我们左边的数列是有序的,当右边的某个数比左边的小时,它比左边那个数组中的右边的数都要小

所以

count += (middle - i + 1); 

最后的逆序对的个数便是count的值

四、结语

今天微服务的学习要放在晚上了

http://www.yayakq.cn/news/968951/

相关文章:

  • 网站的seo如何优化昆明公司做网站
  • 宁波公司有哪些怎样做网站标题优化
  • 珠宝类网站模板代理服务器怎么设置
  • 微网站开发价格php网站怎么搭建环境配置
  • 北京网站建设公司华网制作作wordpress礼物说主题
  • 江苏中小企业网站建设天津的设计公司
  • 阿里云建设网站好不好中国企业大黄页
  • 网站建设打造营销型网站wordpress价格
  • 网站建设流程图visio嘉兴学网站建设
  • 网站头部 标签京东联盟
  • 建站网站有哪些学网站开发好不好
  • 为什么做域名跳转网站样式不见了专业的网页制作服务好
  • 东莞网推广网站建设如何建立一个个人网站
  • 建行网站登录不了智慧政务网站怎么做
  • cn域名知名网站国家信息公示系统入口官网
  • 建站之星免费网页设计报告2000字
  • 自己做的网站只能用谷歌浏览器打开搜索引擎优化关键字
  • 品牌展示型网站有哪些做网站英文编辑有前途吗
  • html网站开发 工具下载小程序到微信
  • 上海网站建设报价方案做美食哪些类型网站
  • 西宁最好网站建设公司快速建设网站免费视频教程
  • 网站开发维护费计入什么科目注册域名的常见问题
  • 网站建设报价请示网站代运营费用
  • 社交网站开发项目计划报告028网站建设
  • 在家做网站编辑实例网站制作教程
  • 云南做网站哪家便宜建立网站免费
  • 网站建设电影做水浒传有关的网站
  • 广西学校论坛网站建设淄博网站制作哪家公司好
  • 做网站网站赚wordpress 侧边悬浮框
  • 淄博网站制作高端网络江苏建设机械网站