当前位置: 首页 > news >正文

广告发布网站开发重庆工程信息网查询

广告发布网站开发,重庆工程信息网查询,深圳市龙华区地图全图,wampserver装wordpress在概率论中, 把有关论证随机变量和的极限分布为正态分布的一类定理称为中心极限定理称为中心极限定理称为中心极限定理。 本文介绍独立同分布序列的中心极限定理。 一 独立同分布序列的中心极限定理 定理1 设X1,X2,...Xn,...X_1, X_2, ...X_n,...X1​,X2​,...Xn…

在概率论中, 把有关论证随机变量和的极限分布为正态分布的一类定理称为中心极限定理称为中心极限定理称为中心极限定理

本文介绍独立同分布序列的中心极限定理。

一 独立同分布序列的中心极限定理

定理1X1,X2,...Xn,...X_1, X_2, ...X_n,...X1,X2,...Xn,... 是独立同分布的随机变量序列, 且具有相同数学期望和方差,E(Xi)=μ,D(Xi)=σ2(i=1,2,...)E(X_i)=\mu, D(X_i)=\sigma^2(i=1,2, ...)E(Xi)=μ,D(Xi)=σ2(i=1,2,...), 记随机变量 Yn=Y_n=Yn=∑i=1nXi−nμnσ\frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n}\sigma}nσi=1nXinμ 的分布函数为Fn(x)F_n(x)Fn(x), 则对于任意实数 xxx,

lim⁡n→∞Fn(x)=lim⁡n→∞P{Yn⩽x}=\lim\limits_{n \rightarrow \infty}F_n(x) =\lim\limits_{n \rightarrow \infty}P\{Y_n \leqslant x\} =nlimFn(x)=nlimP{Ynx}= lim⁡n→∞P\lim\limits_{n \rightarrow \infty}PnlimP{\{{ ∑i=1n−nμnσ\frac{\sum\limits_{i=1}^{n}-n\mu}{ \sqrt{n}\sigma}nσi=1nnμ }\}}

=∫−∞x12πe−t22dt=Φ(x)=\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt=\Phi(x)=x2π1e2t2dt=Φ(x)
,

由这一定理可知以下结论:

1.

当n充分大时, 独立同分布的随机变量之和 Zn=∑i=1nXiZ_n=\sum\limits_{i=1}^{n}X_iZn=i=1nXi的分布近似于正态分布 N(nμ,nσ2)N(n\mu, n\sigma^2)N(nμ,nσ2).
中心极限定理告诉我们, 不论X1,X2,...,Xn,...X_1,X_2, ..., X_n,...X1,X2,...,Xn,...同服从什么分布, 当n充分大时, 其和ZnZ_nZn 近似服从正态分布.

2.

考虑 独立同分布的随机变量X1,X2,...,Xn,...X_1, X_2,..., X_n,...X1,X2,...,Xn,... 的平均值 X‾=1n∑i=1nXi\overline X = \frac{1}{n}\sum\limits_{i=1}^{n}X_iX=n1i=1nXi, 有

E(X‾)=E(\overline X) =E(X)= μ\muμ

D(X‾)=D(\overline X)=D(X)= σ2n\frac{\sigma^2}{n}nσ2
,

它的标准化随机变量为 X‾−μσ/n\frac{\overline X - \mu}{\sigma/ \sqrt{n}}σ/nXμ 即为上述YnY_nYn, 因此 X‾−μσ/n\frac{\overline X - \mu}{\sigma/ \sqrt{n}}σ/nXμ 的分布函数即是上述的Fn(x)F_n(x)Fn(x), 因而有

lim⁡n→∞Fn(x)=∫−∞x12πe−t22dt=Φ(x)\lim\limits_{n \rightarrow \infty}F_n(x) =\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \Phi(x)nlimFn(x)=x2π1e2t2dt=Φ(x).

由此可见, 当n充分大时, 独立同分布随机变量的平均值X‾=1n∑i=1nXi\overline X = \frac{1}{n}\sum\limits_{i=1}^{n}X_iX=n1i=1nXi 的分布近似于正态分布 NNN(μ,σ2n)(\mu, \frac{\sigma^2}{n})(μ,nσ2), 这是独立同分布中心极限定理的另一表达形式


二 棣莫弗—拉普拉斯中心极限定理

此定理是 定理1 的特殊情况。

定理2(棣—拉中心极限定理)

设随机变量ZnZ_nZn是n次独立重复试验中事件A发生的次数, p是事件A发生的概率, 则对于任意实数 xxx

lim⁡n→∞\lim\limits_{n \rightarrow \infty}nlimP{\{{Zn−npnp(1−p)⩽x\frac{Z_n-np}{\sqrt{np(1-p)}}\leqslant xnp(1p)Znnpx}\}}=∫−∞x12πe−t22dt=Φ(x)=\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \Phi(x)=x2π1e2t2dt=Φ(x).

由棣—拉中心极限定理,得到下列结论:

1.

在贝努利试验中, 若事件A发生的概率为p, 设ZnZ_nZn为n次独立重复试验中事件A发生的频数, 则当n充分大时, ZnZ_nZn 近似服从N(np,np(1−p))N(np, np(1-p))N(np,np(1p)).

2.

在贝努利试验中, 若事件A发生的概率为p, Znn\frac{Z_n}{n}nZn 为n次独立重复试验中事件A 发生的频率, 则当n充分大时, Znn\frac{Z_n}{n}nZn 近似服从N(p,p(1−p)n)N(p, \frac{p(1-p)}{n})N(p,np(1p)).



三 例题

  1. 设随机变量X~B(100, 0.2), Φ(x)\Phi(x)Φ(x) 为标准正态分布函数, 已知Φ(2.5)=0.9938\Phi(2.5)=0.9938Φ(2.5)=0.9938, 应用 中心极限定理, 可得 P{20⩽x⩽3020\leqslant x \leqslant 3020x30} ≈\approx ___________。

    解: X ~ B(100, 0.2), np=20, npq = 16, 则P{20 ⩽x⩽30\leqslant x \leqslant 30x30} = P{20−2016⩽X−2016⩽30−2016}P\{{\frac{20-20}{\sqrt{16}} \leqslant \frac{X-20}{\sqrt{16}} \leqslant \frac{30-20}{\sqrt{16}}}\}P{16202016X20163020} (这一步用到定理2)
    ≈Φ(30−204)−Φ(20−204)=Φ(2.5)−Φ(0)=0.9938−0.5=0.4938\approx \Phi(\frac{30-20}{4}) - \Phi(\frac{20-20}{4}) = \Phi(2.5) - \Phi(0) = 0.9938-0.5 = 0.4938Φ(43020)Φ(42020)=Φ(2.5)Φ(0)=0.99380.5=0.4938.
    答案为 0.4938。
http://www.yayakq.cn/news/967818/

相关文章:

  • 汽车销售网站用户密码找回网站
  • 免费建站哪里找网站投稿系统怎么做
  • 溧阳常州做网站新开传奇网站刚开
  • 医院做网站需要多少钱wordpress需要账号
  • 做网站框架可用jpg图吗宁波seo网站服务
  • 如何制作购物网站手机优化怎么关闭
  • 门户网站开发怎么收费儿童网站欣赏
  • 广水住房和城乡建设部网站wordpress使用非80端口
  • 重庆网站搜索推广导视设计英文
  • 如何扫描一个网站的漏洞河南专业做网站
  • 网站开发手机验证码免费论坛网站大全
  • 什么网站可以做软件有哪些内容三亚网站开发公司
  • 网站更新方案新浪微博可以做网站吗
  • 网上书城网站开发背景栾川网站建设
  • 手机刷机网站大全环境设计网站推荐
  • seo如何做网站建设wordpress到day one
  • 买毕业设计的网站网站需要哪些
  • 建设银行网站怎么登陆不了了长沙网站排名技巧
  • 网站建设 好公司开封网站优化公司
  • 北京免费建站模板als冰桶挑战赛的网络营销方式
  • 岳阳手机网站制作网易邮箱注册
  • 开发公司网站公司crm订单管理系统
  • 肃宁县网站建设网站建设 中企动力成都
  • 网站seo优化检测免费获取ppt模板的网站
  • 广州app网站开发网站开发与管理心得体会
  • 海口制作网站企业摘抄一篇新闻
  • 浙江省住房和城乡建设部网站吉林网站制作
  • 网站代备案便宜wordpress 编辑器调用
  • 大连网站建设策划个人可以建设网站吗
  • 番禺建设网站策划wordpress最强的教育网站