当前位置: 首页 > news >正文

网站可以做话筒台标吗合伙企业怎么注册公司

网站可以做话筒台标吗,合伙企业怎么注册公司,在地区做网站怎么赚钱,罗湖区住房和建设局官网激活函数(Activation Functions) 激活函数是神经网络的重要组成部分,它的作用是将神经元的输入信号映射到输出信号,同时引入非线性特性,使神经网络能够处理复杂问题。以下是常见激活函数的种类、公式、图形特点及其应…

激活函数(Activation Functions)

激活函数是神经网络的重要组成部分,它的作用是将神经元的输入信号映射到输出信号,同时引入非线性特性,使神经网络能够处理复杂问题。以下是常见激活函数的种类、公式、图形特点及其应用场景。


1. 常见激活函数及其公式与代码示例

1. Sigmoid 激活函数

公式:

\sigma(x) = \frac{1}{1 + e^{-x}}

特点:
  • 输出范围为 (0, 1)。
  • 对输入较大的值趋于 1,较小的值趋于 0。
  • 常用于神经网络输出层处理二分类问题。
  • 优点
    • 将输入映射为概率值,直观且常用于概率任务。
  • 缺点
    • 梯度消失:输入很大或很小时,梯度趋近 0,导致反向传播时权重更新变慢。
    • 输出不以 0 为中心,不利于零均值数据。
代码示例:
import numpy as np
import matplotlib.pyplot as pltdef sigmoid(x):return 1 / (1 + np.exp(-x))# 示例
x = np.linspace(-10, 10, 100)
y = sigmoid(x)plt.plot(x, y)
plt.title("Sigmoid Activation Function")
plt.xlabel("x")
plt.ylabel("sigmoid(x)")
plt.grid()
plt.show()
运行结果: 


2. Tanh(双曲正切)激活函数

公式:

\text{Tanh}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}

特点:
  • 输出范围为 (-1, 1)。
  • 优点
    • 比 Sigmoid 更对称,输出以 0 为中心,更适合零均值数据。
  • 缺点
    • 梯度消失问题依然存在。
代码示例:
import numpy as np
import matplotlib.pyplot as plt
def tanh(x):return np.tanh(x)x = np.linspace(-10, 10, 100)
y = tanh(x)plt.plot(x, y)
plt.title("Tanh Activation Function")
plt.xlabel("x")
plt.ylabel("tanh(x)")
plt.grid()
plt.show()
运行结果: 


3. ReLU(Rectified Linear Unit)激活函数

公式:

f(x) = max(0, x)

特点:
  • 输出范围为 [0, +∞)。
  • 优点
    • 简单高效,计算速度快。
    • 解决了梯度消失问题,几乎是所有深度学习模型的默认选择。
  • 缺点
    • “死亡神经元”:当输入总是小于 0 时,梯度为 0,神经元可能永远不会被激活。
代码示例:
import numpy as np
import matplotlib.pyplot as pltdef relu(x):return np.maximum(0, x)x = np.linspace(-10, 10, 100)
y = relu(x)plt.plot(x, y)
plt.title("ReLU Activation Function")
plt.xlabel("x")
plt.ylabel("ReLU(x)")
plt.grid()
plt.show()
运行结果: 


4. Leaky ReLU 激活函数

公式:

f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha x & \text{if } x \leq 0 \end{cases}

其中,α 是一个小于 1 的常数,通常取 0.01。

特点:
  • 优点
    • 解决 ReLU 的“死亡神经元”问题。
    • 在负数输入上具有小的线性斜率。
  • 缺点
    • 引入了超参数 α,需手动调节。
代码示例:
import numpy as np
import matplotlib.pyplot as plt
def leaky_relu(x, alpha=0.01):return np.where(x > 0, x, alpha * x)x = np.linspace(-10, 10, 100)
y = leaky_relu(x)plt.plot(x, y)
plt.title("Leaky ReLU Activation Function")
plt.xlabel("x")
plt.ylabel("Leaky ReLU(x)")
plt.grid()
plt.show()
运行结果: 


5. ELU(Exponential Linear Unit)激活函数

公式:

f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (e^x - 1) & \text{if } x \leq 0 \end{cases}

其中,α 通常取 1。

特点:
  • 优点
    • 负数部分平滑处理,有助于减少梯度消失问题,训练更稳定。
    • 能加速模型收敛。
  • 缺点
    • 计算复杂度稍高。
代码示例:
import numpy as np
import matplotlib.pyplot as plt
def elu(x, alpha=1.0):return np.where(x > 0, x, alpha * (np.exp(x) - 1))x = np.linspace(-10, 10, 100)
y = elu(x)plt.plot(x, y)
plt.title("ELU Activation Function")
plt.xlabel("x")
plt.ylabel("ELU(x)")
plt.grid()
plt.show()
运行结果: 


6. Softmax 激活函数

公式:

\text{Softmax}(x_i) = \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}

特点:
  • 将输入映射为概率分布,适用于多分类问题,常用于多分类问题的最后一层。
  • 输出范围为 (0, 1),且总和为 1。
代码示例:
import numpy as npdef softmax(x):exp_x = np.exp(x - np.max(x))  # 防止数值溢出return exp_x / np.sum(exp_x)# 示例
x = np.array([1.0, 2.0, 3.0, 6.0])
y = softmax(x)print("Softmax Output:", y)
print("Sum of Softmax Output:", np.sum(y))  # 确保总和为 1
运行结果:
Softmax Output: [0.00626879 0.01704033 0.04632042 0.93037047]
Sum of Softmax Output: 1.0


7. Swish 激活函数

公式:

f(x) = x \cdot \text{Sigmoid}(\beta x)

其中,β 是可学习参数,通常默认为 1。

特点:
  • 优点
    • 平滑可微,能捕获复杂特征。
    • 在深度网络中比 ReLU 表现更优。
代码示例:
import numpy as np
import matplotlib.pyplot as pltdef sigmoid(x):return 1 / (1 + np.exp(-x))
def swish(x, beta=1.0):return x * sigmoid(beta * x)x = np.linspace(-10, 10, 100)
y = swish(x)plt.plot(x, y)
plt.title("Swish Activation Function")
plt.xlabel("x")
plt.ylabel("Swish(x)")
plt.grid()
plt.show()
运行结果: 


2. 激活函数的选择与应用

任务导向的选择:
  • 分类问题:
    • 二分类:Sigmoid 或 Softmax。
    • 多分类:Softmax。
  • 回归问题:
    • 使用线性激活函数或无激活函数。
  • 深度学习(卷积网络、RNN 等):
    • 通常采用 ReLU 及其变种(Leaky ReLU、ELU)。
层次结构的选择:
  • 隐藏层:
    • 一般使用 ReLU 或其变种。
  • 输出层:
    • 分类:Softmax 或 Sigmoid。
    • 回归:线性激活函数。

3.激活函数对比总结

激活函数输出范围是否有梯度消失是否有“死亡神经元”常见应用场景
Sigmoid(0, 1)二分类输出
Tanh(-1, 1)RNN 或零均值数据
ReLU[0, +∞)深层网络的隐藏层
Leaky ReLU(−∞, +∞)深层网络
ELU(−α, +∞)深度网络
Softmax(0, 1)多分类输出层
Swish(−∞, +∞)深度网络或复杂任务

通过结合理论和代码示例,可以根据任务特点选择合适的激活函数以优化模型性能。


4. 未来趋势

  • 现代深度学习中,激活函数的发展更加注重可学习性性能优化
  • 像 Swish 和 GELU 等新型激活函数正在逐步取代传统激活函数,尤其在深度和复杂的网络中表现更优。
http://www.yayakq.cn/news/580813/

相关文章:

  • 自己做的电商网站要多少钱wordpress 不能拖动了
  • 推广网站大全汉堡只做网站
  • 海南的论坛网站建设网站模板中心
  • 陈光锋网站运营推广新动向专业高端企业网站建设
  • 莱芜雪野湖滑雪场seo站长查询
  • 沈阳世纪兴网站建设好看的网站建设公司
  • 深圳 seo 外贸网站建设 多语种甘肃省省建设厅网站
  • 国内优秀设计网站推荐北京网站建设建站
  • 建设网站的意义知乎sem分析
  • zencart网站建设搜索引擎提交网站
  • 手机网站模板 源码网页制作及欣赏
  • 网课网站我爱营销网
  • 官方网站开发哪家便宜html编辑器怎么用
  • 如何开发电商网站来年做那个网站能致富
  • 怎么看待网站开发网站滑块验证怎么做
  • 大气时尚的网站用dw做网站的好处
  • 用vs做网站如何连接数据库西安网络推广
  • wordpress建站平台网站建设.龙兵
  • 网站空间如何申请知更鸟wordpress主题
  • 网站建化wordpress主题名字
  • 东莞seo建站优化费用html编辑器在哪
  • 网站建设框架程序企业网站建设多少钱
  • 三星企业网站建设ppt网站建设 甘肃
  • 浙江网站设计 site用wordpress做商城
  • 用电脑建设个人网站 并用手机访问自己怎样学做网站
  • 高端大气的企业网站模板徐州做网站管理的公司
  • 网站建设邀请函学计算机出来能干什么
  • 网站单个页面紧张搜索引擎蜘蛛如何让百度搜索到自己的网站
  • 网站运营模式网站建设服务代理
  • seo包括网站建设吗wordpress头条采集