当前位置: 首页 > news >正文

做网站是什么专业自己买台服务器做网站

做网站是什么专业,自己买台服务器做网站,微餐饮网站建设官网,潜江招聘网Stanford Alpaca 是在 LLaMA 整个模型上微调,即对预训练模型中的所有参数都进行微调(full fine-tuning)。但该方法对于硬件成本要求仍然偏高且训练低效。 [NLP]理解大型语言模型高效微调(PEFT) 因此, Alpaca-Lora 则是利用 Lora…

Stanford Alpaca 是在 LLaMA 整个模型上微调,即对预训练模型中的所有参数都进行微调(full fine-tuning)。但该方法对于硬件成本要求仍然偏高且训练低效。

[NLP]理解大型语言模型高效微调(PEFT)

因此, Alpaca-Lora 则是利用 Lora 技术,在冻结原模型 LLaMA 参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。由于这些新增参数数量较少,这样不仅微调的成本显著下降,还能获得和全模型微调(full fine-tuning)类似的效果。

LoRA 的原理其实并不复杂,它的核心思想是在原始预训练语言模型旁边增加一个旁路,做一个降维再升维的操作,来模拟所谓的 intrinsic rank(预训练模型在各类下游任务上泛化的过程其实就是在优化各类任务的公共低维本征(low-dimensional intrinsic)子空间中非常少量的几个自由参数)。训练的时候固定预训练语言模型的参数,只训练降维矩阵 A 与升维矩阵 B。而模型的输入输出维度不变,输出时将 BA 与预训练语言模型的参数叠加。用随机高斯分布初始化 A,用 0 矩阵初始化 B。这样能保证训练开始时,新增的通路BA=0从,而对模型结果没有影响。

在推理时,将左右两部分的结果加到一起即可,h=Wx+BAx=(W+BA)x,所以,只要将训练完成的矩阵乘积BA跟原本的权重矩阵W加到一起作为新权重参数替换原始预训练语言模型的W即可,不会增加额外的计算资源。

LoRA 的最大优势是速度更快,使用的内存更少;因此,可以在消费级硬件上运行。

准备数据集

fine-tune 的目标通常有两种:

  • 像 Alpaca 一样,收集 input/output 生成 prompt 用于训练,让模型完成特定任务
  • 语言填充,收集文本用于训练,让模型补全 prompt。

以第一种目标为例,假设我们的目标是让模型讲中文,那么,我们可以通过其他 LLM (如 text-davinci-003)把一个现有数据集(如 Alpaca)翻译为中文来做 fine-tune。实际上这个想法已经在开源社区已经有人实现了。

为了达成这个目标,我使用的数据集是 Luotuo 作者翻译的 Alpaca 数据集,训练代码主要来自 Alpaca-LoRA。

wget https://github.com/LC1332/Chinese-alpaca-lora/blob/main/data/trans_chinese_alpaca_data.json

Alpach-LoRA 目录中也包含fine-tune的English数据集:

除此之外,可参考GPT-4-LLM项目,该项目还提供了使用Alpaca的Prompt翻译成中文使用 GPT4 生成了 5.2 万条指令跟随数据。

一 环境搭建

基础环境配置如下:

  • 操作系统: CentOS 7
  • CPUs: 单个节点具有 1TB 内存的 Intel CPU,物理CPU个数为64,每颗CPU核数为16
  • GPUs: 4 卡 A100 80GB GPU
  • Docker Image: pytorch:1.13.0-cuda11.6-cudnn8-devel

1.在 Alpaca-LoRA 项目中,作者提到,他们使用了 Hugging Face 的 PEFT。PEFT 是一个库(LoRA 是其支持的技术之一,除此之外还有Prefix Tuning、P-Tuning、Prompt Tuning),可以让你使用各种基于 Transformer 结构的语言模型进行高效微调。下面安装PEFT。

#安装peft
git clone https://github.com/huggingface/peft.git
cd peft/
pip install .

2.  bitsandbytes是对CUDA自定义函数的轻量级封装

 特别是针对8位优化器、矩阵乘法(LLM.int8())和量化函数。

#安装bitsandbytes。
git clone git@github.com:TimDettmers/bitsandbytes.git
cd bitsandbytes
CUDA_VERSION=116 make cuda11x
python setup.py install
如果安装 bitsandbytes出现如下错误:
/usr/bin/ld: cannot find -lcudart

请行执行如下命令

cd /usr/lib
ln -s /usr/local/cuda/lib64/libcudart.so libcudart.so

3.Alpaca-Lora微调代码

#下载alpaca-lora
git clone git@github.com:tloen/alpaca-lora.git
cd alpaca-lora
pip install -r requirements.txt

requirements.txt文件具体的内容如下:

accelerate
appdirs
loralib
bitsandbytes
black
black[jupyter]
datasets
fire
git+https://github.com/huggingface/peft.git
transformers>=4.28.0
sentencepiece
gradio

二 模型格式转换

将LLaMA原始权重文件转换为Transformers库对应的模型文件格式。可以直接从Hugging Face下载转换好的模型如下:

下载方法可以参考:[NLP]Huggingface模型/数据文件下载方法

decapoda-research/llama-7b-hf · Hugging Face

decapoda-research/llama-13b-hf · Hugging Face

三 模型微调

Alpaca Lora 作者采用了 Hugging Face 的轻量化微调库(Parameter Efficient Fine-Tuning,PEFT)中所支持的 LoRA 方法。LoRA 方法的两项配置会直接影响需要训练的参数量:

1)LoRA 目标模块(lora_target_modules),用于指定要对哪些模块的参数进行微调。比如我们可以对 Q, K, V, O 都进行微调;也可以只对 Q、V 进行微调。不同的设定会影响需要微调的参数量,也会影响训练过程中的计算量。比如当我们设定只对 Q、V 进行微调时,需要训练的参数量(trainable parameters)只占整个模型参数总量的 6% 左右。

2)LoRA 的秩(lora_r)也是影响训练参数量的一个重要因素。客观来说,使用 LoRA 这样的方法训练得到的模型,在效果上必然会和直接在原始大模型基础上进行训练的效果有一定差异。因此,可以结合所拥有的机器配置、可以容忍的最大训练时长等因素,来灵活地配置 LoRA 的使用方法。

python finetune.py \--base_model '/disk1/llama-13b' \--data_path './alpaca_data_cleaned_archive.json' \--output_dir './lora-alpaca' \--batch_size 128 \--micro_batch_size 8 \--num_epochs 1torchrun --nproc_per_node=4 --master_port=29000 finetune.py \--base_model '/disk1/llama-13b' \--data_path './alpaca_data_cleaned_archive.json' \--output_dir './lora-alpaca' \--batch_size 128 \--micro_batch_size 8 \--num_epochs 1
Training Alpaca-LoRA model with params:
base_model: /disk1/llama-13b
data_path: ./alpaca_data_cleaned_archive.json
output_dir: ./lora-alpaca
batch_size: 128
micro_batch_size: 8
num_epochs: 1
learning_rate: 0.0003
cutoff_len: 256
val_set_size: 2000
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: ['q_proj', 'v_proj']
train_on_inputs: True
add_eos_token: False
group_by_length: False
wandb_project: 
wandb_run_name: 
wandb_watch: 
wandb_log_model: 
resume_from_checkpoint: False
prompt template: alpacaLoading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 41/41 [00:43<00:00,  1.06s/it]
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 41/41 [00:43<00:00,  1.06s/it]
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 41/41 [00:43<00:00,  1.06s/it]
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 41/41 [00:43<00:00,  1.06s/it]
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
You are using the legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565
/opt/conda/lib/python3.9/site-packages/peft/utils/other.py:102: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead.warnings.warn(
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
You are using the legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
You are using the legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565
/opt/conda/lib/python3.9/site-packages/peft/utils/other.py:102: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead.warnings.warn(
/opt/conda/lib/python3.9/site-packages/peft/utils/other.py:102: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead.warnings.warn(
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
You are using the legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565
/opt/conda/lib/python3.9/site-packages/peft/utils/other.py:102: FutureWarning: prepare_model_for_int8_training is deprecated and will be removed in a future version. Use prepare_model_for_kbit_training instead.warnings.warn(
trainable params: 6,553,600 || all params: 13,022,417,920 || trainable%: 0.05032552357220002
Map:   3%|███▊                                                                                                                                          | 1330/49759 [00:01<00:39, 1216.23 examples/s]trainable params: 6,553,600 || all params: 13,022,417,920 || trainable%: 0.05032552357220002
Map:   0%|                                                                                                                                                           | 0/49759 [00:00<?, ? examples/s]trainable params: 6,553,600 || all params: 13,022,417,920 || trainable%: 0.05032552357220002
Map:   1%|▊                                                                                                                                              | 272/49759 [00:00<00:36, 1350.21 examples/s]trainable params: 6,553,600 || all params: 13,022,417,920 || trainable%: 0.05032552357220002
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 49759/49759 [00:38<00:00, 1294.31 examples/s]
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 49759/49759 [00:38<00:00, 1284.04 examples/s]
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 49759/49759 [00:38<00:00, 1283.95 examples/s]
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2000/2000 [00:01<00:00, 1221.03 examples/s]
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).
Map: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 49759/49759 [00:39<00:00, 1274.42 examples/s]
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2000/2000 [00:01<00:00, 1285.16 examples/s]
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2000/2000 [00:01<00:00, 1281.27 examples/s]
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).
Map: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2000/2000 [00:01<00:00, 1290.31 examples/s]
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).
[W socket.cpp:601] [c10d] The client socket cannot be initialized to connect to [localhost]:29005 (errno: 97 - Address family not supported by protocol).0%|                                                                                                                                                                         | 0/388 [00:00<?, ?it/s]/opt/conda/lib/python3.9/site-packages/bitsandbytes-0.41.0-py3.9.egg/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantizationwarnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
/opt/conda/lib/python3.9/site-packages/bitsandbytes-0.41.0-py3.9.egg/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantizationwarnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
/opt/conda/lib/python3.9/site-packages/bitsandbytes-0.41.0-py3.9.egg/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantizationwarnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
/opt/conda/lib/python3.9/site-packages/bitsandbytes-0.41.0-py3.9.egg/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantizationwarnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
{'loss': 2.249, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.03}                                                                                                                               
{'loss': 2.1927, 'learning_rate': 5.6999999999999996e-05, 'epoch': 0.05}                                                                                                                              
{'loss': 2.0813, 'learning_rate': 7.8e-05, 'epoch': 0.08}                                                                                                                                             
{'loss': 1.7206, 'learning_rate': 0.00010799999999999998, 'epoch': 0.1}                                                                                                                               11%|████████████████▋                                                                                                                               11%|███████████▋                                                                                                | 42/388 [10:50<1:27:2

4卡输出结果如上图,显存占用如下 

-------------------------------+----------------------+----------------------+
|   0  NVIDIA A100-SXM...  On   | 00000000:47:00.0 Off |                    0 |
| N/A   60C    P0   322W / 400W |  36944MiB / 81920MiB |     89%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA A100-SXM...  On   | 00000000:4B:00.0 Off |                    0 |
| N/A   61C    P0   321W / 400W |  34204MiB / 81920MiB |     97%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   2  NVIDIA A100-SXM...  On   | 00000000:89:00.0 Off |                    0 |
| N/A   62C    P0   349W / 400W |  34200MiB / 81920MiB |     98%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   3  NVIDIA A100-SXM...  On   | 00000000:8E:00.0 Off |                    0 |
| N/A   63C    P0   261W / 400W |  33882MiB / 81920MiB |     89%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+

四  合并模型

1.导出为 HuggingFace 格式:

可以下载: Angainor/alpaca-lora-13b · Hugging Face   的lora_weights

修改export_hf_checkpoint.py文件:

import osimport torch
import transformers
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer  # noqa: F402BASE_MODEL = os.environ.get("BASE_MODEL", "/disk1/llama-13b")
LORA_MODEL = os.environ.get("LORA_MODEL", "./alpaca-lora-13b")
HF_CHECKPOINT = os.environ.get("HF_CHECKPOINT", "./hf_ckpt")tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)base_model = LlamaForCausalLM.from_pretrained(BASE_MODEL,load_in_8bit=False,torch_dtype=torch.float16,device_map={"": "cpu"},
)first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()lora_model = PeftModel.from_pretrained(base_model,LORA_MODEL,device_map={"": "cpu"},torch_dtype=torch.float16,
)lora_weight = lora_model.base_model.model.model.layers[0
].self_attn.q_proj.weightassert torch.allclose(first_weight_old, first_weight)# merge weights - new merging method from peft
lora_model = lora_model.merge_and_unload()lora_model.train(False)# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)lora_model_sd = lora_model.state_dict()
deloreanized_sd = {k.replace("base_model.model.", ""): vfor k, v in lora_model_sd.items()if "lora" not in k
}LlamaForCausalLM.save_pretrained(base_model, HF_CHECKPOINT, state_dict=deloreanized_sd, max_shard_size="400MB"
)

python export_hf_checkpoint.py

The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization.
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'.
The class this function is called from is 'LlamaTokenizer'.
You are using the legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 41/41 [00:26<00:00,  1.56it/s]

查看模型输出文件:

hf_ckpt/
├── config.json
├── generation_config.json
├── pytorch_model-00001-of-00082.bin
├── pytorch_model-00002-of-00082.bin
├── pytorch_model-00003-of-00082.bin
├── pytorch_model-00004-of-00082.bin
├── pytorch_model-00005-of-00082.bin
├── pytorch_model-00006-of-00082.bin
├── pytorch_model-00007-of-00082.bin
├── pytorch_model-00008-of-00082.bin
├── pytorch_model-00009-of-00082.bin
├── pytorch_model-00010-of-00082.bin
├── pytorch_model-00011-of-00082.bin
├── pytorch_model-00012-of-00082.bin
├── pytorch_model-00013-of-00082.bin
├── pytorch_model-00014-of-00082.bin
├── pytorch_model-00015-of-00082.bin
├── pytorch_model-00016-of-00082.bin
├── pytorch_model-00017-of-00082.bin
├── pytorch_model-00018-of-00082.bin
├── pytorch_model-00019-of-00082.bin
├── pytorch_model-00020-of-00082.bin
├── pytorch_model-00021-of-00082.bin
├── pytorch_model-00022-of-00082.bin
├── pytorch_model-00023-of-00082.bin
├── pytorch_model-00024-of-00082.bin
├── pytorch_model-00025-of-00082.bin
├── pytorch_model-00026-of-00082.bin
├── pytorch_model-00027-of-00082.bin
├── pytorch_model-00028-of-00082.bin
├── pytorch_model-00029-of-00082.bin
├── pytorch_model-00030-of-00082.bin
├── pytorch_model-00031-of-00082.bin
├── pytorch_model-00032-of-00082.bin
├── pytorch_model-00033-of-00082.bin
├── pytorch_model-00034-of-00082.bin
├── pytorch_model-00035-of-00082.bin
├── pytorch_model-00036-of-00082.bin
├── pytorch_model-00037-of-00082.bin
├── pytorch_model-00038-of-00082.bin
├── pytorch_model-00039-of-00082.bin
├── pytorch_model-00040-of-00082.bin
├── pytorch_model-00041-of-00082.bin
├── pytorch_model-00042-of-00082.bin
├── pytorch_model-00043-of-00082.bin
├── pytorch_model-00044-of-00082.bin
├── pytorch_model-00045-of-00082.bin
├── pytorch_model-00046-of-00082.bin
├── pytorch_model-00047-of-00082.bin
├── pytorch_model-00048-of-00082.bin
├── pytorch_model-00049-of-00082.bin
├── pytorch_model-00050-of-00082.bin
├── pytorch_model-00051-of-00082.bin
├── pytorch_model-00052-of-00082.bin
├── pytorch_model-00053-of-00082.bin
├── pytorch_model-00054-of-00082.bin
├── pytorch_model-00055-of-00082.bin
├── pytorch_model-00056-of-00082.bin
├── pytorch_model-00057-of-00082.bin
├── pytorch_model-00058-of-00082.bin
├── pytorch_model-00059-of-00082.bin
├── pytorch_model-00060-of-00082.bin
├── pytorch_model-00061-of-00082.bin
├── pytorch_model-00062-of-00082.bin
├── pytorch_model-00063-of-00082.bin
├── pytorch_model-00064-of-00082.bin
├── pytorch_model-00065-of-00082.bin
├── pytorch_model-00066-of-00082.bin
├── pytorch_model-00067-of-00082.bin
├── pytorch_model-00068-of-00082.bin
├── pytorch_model-00069-of-00082.bin
├── pytorch_model-00070-of-00082.bin
├── pytorch_model-00071-of-00082.bin
├── pytorch_model-00072-of-00082.bin
├── pytorch_model-00073-of-00082.bin
├── pytorch_model-00074-of-00082.bin
├── pytorch_model-00075-of-00082.bin
├── pytorch_model-00076-of-00082.bin
├── pytorch_model-00077-of-00082.bin
├── pytorch_model-00078-of-00082.bin
├── pytorch_model-00079-of-00082.bin
├── pytorch_model-00080-of-00082.bin
├── pytorch_model-00081-of-00082.bin
├── pytorch_model-00082-of-00082.bin
└── pytorch_model.bin.index.json0 directories, 85 files

2 导出为PyTorch state_dicts

同理修改export_state_dict_checkpoint.py文件:

第五步:quantization(可选)

最后,Quantization 可以帮助我们加速模型推理,并减少推理所需内存。这方面也有开源的工具可以直接使用。

第六步:相关问题

保存检查点(checkpoint model)时出现显存溢出OOM(Out Of Memory)

调优过程中,遇到保存检查点model(checkpoint model)时出现显存溢出OOM(Out Of Memory)的问题,经过查看issue-CUDA out of memory中的讨论,发现是 bitsandbytes 的新版0.38.1存在bug,需要将版本退回0.37.2,问题解决。

调优结束后adapter_model.bin 没有参数(大小为443)

这个问题主要是由于alpaca-lora和peft库之间的兼容性问题,根据 fix issues to be compatible with latest peft #359 中的讨论来看,目前最简单的做法是修改 finetune.py文件,具体如下:

model.save_pretrained(output_dir) # 原来275行的代码
model.save_pretrained(output_dir,state_dict=old_state_dict()) # 修改后的275行的代码

参考文档

  • LLaMA
  • Stanford Alpaca:斯坦福-羊驼
  • Alpaca-LoRA
  • GPT fine-tune实战
  • 使用 LoRA 技术对 LLaMA 65B 大模型进行微调及推理 - 知乎 (zhihu.com)

http://www.yayakq.cn/news/965050/

相关文章:

  • 二级域名可以做网站吗net网站开发JD
  • 如何知道网站用什么程序做的手机 网站 开发
  • 本地南昌网站建设住房和城乡建设部政务服务门户网站
  • 网站选项卡图标代码北京网站设计网站设计公司价格
  • 黑龙江建设网官哈尔滨seo排名优化公司价格
  • 主题商店网站设计在线链接
  • 今天的新闻大事qq排名优化网站
  • 网站主机方案做短租哪个网站
  • 在线看国内永久免费crm广州seo地址
  • php企业网站后台管理系统京东商城网页版
  • 有创意的宣传方式有哪些免费关键词优化排名软件
  • 作品集怎么做网站专业建站的网站
  • 陕西建设网官网公示网站如何免费做SEO优化
  • 陕西公路工程建设有限公司网站网页设计与制作课程标准化项目申报书
  • 枸橼酸西地那非片的功效与作用哪种语言的网站 做seo更好
  • 网站语言包是什么河南火焰山网站开发禹
  • 公司网站开发费能记研发费用哪个科目快速的可视化平台
  • 德源网站建设长沙有哪些网络平台公司
  • 做一手楼盘的网站哈尔滨站建筑面积
  • 网站优化布局网站推广营销方法
  • 泉州住房城乡建设局网站小程序免费推广平台
  • 查询商品价格走势的网站常见的服务器有哪些
  • 江苏网站开发公司电商网站课程设计报告
  • 关于当当网站建设方案英文网站推广服务
  • 90设计网站官网入口网站次年续费
  • 公司网站建设与维护工作计划国外wordpress
  • 网站建设及推广网站被墙怎么做跳转
  • 滨海做网站找哪家好聚名网平台
  • 网站软件下载安装免费版上海市做网站的公司
  • 怎样做网站平叿网站互动栏目设置