当前位置: 首页 > news >正文

摄影网站网址大全详情页设计多少钱

摄影网站网址大全,详情页设计多少钱,蓬莱网站建设价格,温州建设信息港网站《Dataset Condensation with Differentiable Siamese Augmentation》 在本文中,我们专注于将大型训练集压缩成显著较小的合成集,这些合成集可以用于从头开始训练深度神经网络,性能下降最小。受最近的训练集合成方法的启发,我们提…

《Dataset Condensation with Differentiable Siamese Augmentation》

在本文中,我们专注于将大型训练集压缩成显著较小的合成集,这些合成集可以用于从头开始训练深度神经网络,性能下降最小。受最近的训练集合成方法的启发,我们提出了可微暹罗增强方法,它可以有效地利用数据增强来合成更具信息的合成图像,从而在使用增强方法训练网络时获得更好的性能。在多个图像分类基准上的实验表明,该方法在CIFAR10和CIFAR100数据集上取得了较先进水平的显著提高,提高了7%。结果表明,该方法在MNIST、FashionMNIST、SVHN、CIFAR10上的相对性能分别为99.6%、94.9%、88.5%、71.5%,数据量不到1%。

在这里插入图片描述

方法:

1. 简单介绍DC(Data Condensation)

假设我们有一个巨大的训练集 T = \mathcal{T}= T= { ( x 1 , y 1 ) , … , ( x ∣ T ∣ , y ∣ T ∣ ) } \left\{\left(\boldsymbol{x}_1, y_1\right), \ldots,\left(\boldsymbol{x}_{|\mathcal{T}|}, y_{|\mathcal{T}|}\right)\right\} {(x1,y1),,(xT,yT)} 其中有 ∣ T ∣ |\mathcal{T}| T 个图片和标签对. DC (Zhao et al., 2021)目标是学习一个更小的数据集 ∣ S ∣ |\mathcal{S}| S 生成图片和标签对。 S = \mathcal{S}= S= { ( s 1 , y 1 ) , … , ( s ∣ S ∣ , y ∣ S ∣ ) } \left\{\left(\boldsymbol{s}_1, y_1\right), \ldots,\left(\boldsymbol{s}_{|\mathcal{S}|}, y_{|\mathcal{S}|}\right)\right\} {(s1,y1),,(sS,yS)} 来自于(通过学习) T \mathcal{T} T 并且在数据集 S \mathcal{S} S 上训练的神经网络效果和在 T \mathcal{T} T 上训练得到的神经网络效果接近。 用 ϕ θ T \phi_{\boldsymbol{\theta}^{\mathcal{T}}} ϕθT ϕ θ S \phi_{\boldsymbol{\theta}^{\mathcal{S}}} ϕθS 表示深度神经网络,其参数分别为 θ T \boldsymbol{\theta}^{\mathcal{T}} θT θ S \boldsymbol{\theta}^{\mathcal{S}} θS,分别在训练集 T \mathcal{T} T S \mathcal{S} S 上训练得到。DC的目标是如下方程:
E x ∼ P D [ ℓ ( ϕ θ τ ( x ) , y ) ] ≃ E x ∼ P D [ ℓ ( ϕ θ S ( x ) , y ) ] \begin{equation} \mathbb{E}_{\boldsymbol{x} \sim P_{\mathcal{D}}}\left[\ell\left(\phi_{\boldsymbol{\theta}^\tau}(\boldsymbol{x}), y\right)\right] \simeq \mathbb{E}_{\boldsymbol{x} \sim P_{\mathcal{D}}}\left[\ell\left(\phi_{\boldsymbol{\theta}^{\mathcal{S}}}(\boldsymbol{x}), y\right)\right] \end{equation} ExPD[(ϕθτ(x),y)]ExPD[(ϕθS(x),y)]
在真实数据分布 P D P_{\mathcal{D}} PD 上的损失 ℓ \ell (i.e. cross-entropy loss)。

在浓缩数据集 S \mathcal{S} S 上训练得到的模型参数要尽可能接近原始数据集的结果, i.e. θ S ≈ θ T \boldsymbol{\theta}^{\mathcal{S}} \approx \boldsymbol{\theta}^{\mathcal{T}} θSθT

然后作者就开始举例DC有哪些不好的地方。

例如:

  1. 在每一轮都假设 θ t T \boldsymbol{\theta}^{\mathcal{T}}_t θtT θ t S \boldsymbol{\theta}^{\mathcal{S}}_t θtS相等,继续训练。
  2. 只对一个模型进行提取。

2. DSA

方法就是在DC前面套了一层数据增强,可微的数据增强

进入正题,那么本文提出的DSA,可微暹罗增强(我也不知道为什么是暹罗)

2.1 暹罗增强

首先是暹罗增强,在图片数据中基本就是裁剪,旋转,颜色变换等
min ⁡ S D ( ∇ θ L ( A ( S , ω S ) , θ t ) , ∇ θ L ( A ( T , ω T ) , θ t ) ) \min _{\mathcal{S}} D\left(\nabla_{\boldsymbol{\theta}} \mathcal{L}\left(\mathcal{A}\left(\mathcal{S}, \omega^{\mathcal{S}}\right), \boldsymbol{\theta}_t\right), \nabla_{\boldsymbol{\theta}} \mathcal{L}\left(\mathcal{A}\left(\mathcal{T}, \omega^{\mathcal{T}}\right), \boldsymbol{\theta}_t\right)\right) SminD(θL(A(S,ωS),θt),θL(A(T,ωT),θt))
此处 ω T \omega^{\mathcal{T}} ωT ω S \omega^{\mathcal{S}} ωS分别代表了在两个数据集上进行的数据增强参数。然后作者指出,如果使用随机分布的 ω T \omega^{\mathcal{T}} ωT ω S \omega^{\mathcal{S}} ωS会导致训练无法收敛,因此在文中使用的 ω T = ω S \omega^{\mathcal{T}} = \omega^{\mathcal{S}} ωT=ωS

那么因为,浓缩数据集 S \mathcal{S} S和原始数据集 T \mathcal{T} T肯定是不一样的,那就没有一个一对一的关系,来进行同样的数据增强,那么文中的方法就是,一个batch的数据使用一样的数据增强。一个batch里 S \mathcal{S} S T \mathcal{T} T相互对应。

2.2 可微增强

要让这个过程可以BP训练,那么这个数据增强必须是可以微分的,即:
∂ D ( ⋅ ) ∂ S = ∂ D ( ⋅ ) ∂ ∇ θ L ( ⋅ ) ∂ ∇ θ L ( ⋅ ) ∂ A ( ⋅ ) ∂ A ( ⋅ ) ∂ S \frac{\partial D(\cdot)}{\partial \mathcal{S}}=\frac{\partial D(\cdot)}{\partial \nabla_{\boldsymbol{\theta}} \mathcal{L}(\cdot)} \frac{\partial \nabla_{\boldsymbol{\theta}} \mathcal{L}(\cdot)}{\partial \mathcal{A}(\cdot)} \frac{\partial \mathcal{A}(\cdot)}{\partial \mathcal{S}} SD()=θL()D()A()θL()SA()
在这里插入图片描述

Traditionally transformations used for data augmentation are not implemented in a differentiable way, as optimizing input images is not their focus. Note that all the standard data augmentation methods for images are differentiable and can be implemented as differentiable layers.

这里是不是有点自相矛盾,传统数据增强变换实现不是可微的,但是图像上的标准数据增强方法是可微的?

2.3 训练过程

在这里插入图片描述
和DC基本一致,最外层训练K负责训练不同的模型初始化以增强浓缩数据集适用性,内层不断更新模型,训练T-1步,最内层是对每一个标签进行训练更新数据集。

3. 实验结果

在这里插入图片描述

http://www.yayakq.cn/news/967847/

相关文章:

  • 做贸易进出口要什么网站平台wordpress 怎么改字体大小
  • 网站正在建设中 htmll虚拟主机怎么建设网站
  • iis网站模板网站换域名有没有影响吗
  • 广州网站优化排名推广村级门户网站建设
  • 泰州北京网站建设电商一年可以赚多少钱
  • 在哪做网站便宜又好网站开发培训要多少钱
  • 如何做网站流量做app界面设计用什么软件
  • wordpress rss 文章廊坊网页关键词优化
  • 天津 公司网站建设网络推广培训班
  • 建 导航网站好磁力搜索器kitty
  • 西安本地十家做网站建设的公司网站ip地址向谁购买
  • 傻瓜式搭建网站凡科建站收费
  • 网站设计建设公司服务商江苏省交通建设厅门户网站
  • 安防公司网站建设北京网站建设课程培训
  • 大同本地做网站的网站后台怎么制作
  • 高端集团官方网站建设公司4399全部网页游戏大全
  • 专业的建设网站服务单县网页设计
  • 山西路桥建设集团网站百度手机版网页
  • 网站空间优惠aso优化平台
  • 怎样做加入购物车的网站初一下电脑课书做网站
  • 中山做网站哪家便宜佛山网站关键词
  • 太原微信网站开发百度索引量和网站排名
  • 做铜字接单网站网站开发需要干什么
  • 产品设计网站制作物流公司电话上门取货便宜
  • 广告发布网站开发重庆工程信息网查询
  • 汽车销售网站用户密码找回网站
  • 免费建站哪里找网站投稿系统怎么做
  • 溧阳常州做网站新开传奇网站刚开
  • 医院做网站需要多少钱wordpress需要账号
  • 做网站框架可用jpg图吗宁波seo网站服务