当前位置: 首页 > news >正文

媒体网站模版重庆网站建设-首选云慧通

媒体网站模版,重庆网站建设-首选云慧通,揭阳市建设局网站,和建设银行类似的网站目录 简述 什么是高通滤波? 高通滤波的概念 应用场景 索贝尔算子 算子公式 实现代码 特点 沙尔算子 算子公式 实现代码 特点 拉普拉斯算子 算子公式 实现代码 特点 高通滤波器的对比与应用场景 相关阅读 OpenCV:图像滤波、卷积与卷积核…

目录

简述

什么是高通滤波?

高通滤波的概念

应用场景

索贝尔算子

 算子公式

实现代码

特点

沙尔算子

算子公式

实现代码

特点

拉普拉斯算子

算子公式

实现代码

特点

高通滤波器的对比与应用场景


相关阅读

OpenCV:图像滤波、卷积与卷积核-CSDN博客

OpenCV:图像处理中的低通滤波-CSDN博客


简述

高通滤波是一种增强图像高频分量的处理方法,常用于边缘检测和特征提取。在图像处理中,高通滤波可以突出图像中的边缘、轮廓和细节信息,而抑制平滑区域(低频分量)。

本文将重点介绍三种常见的高通滤波器:索贝尔(Sobel)、沙尔(Scharr) 和 拉普拉斯(Laplacian),并结合代码和应用场景进行讲解。


什么是高通滤波?

高通滤波的概念

高通滤波是对图像进行卷积操作,以保留图像中的快速变化部分(如边缘和细节),同时抑制低频分量(如大面积平坦区域)。

应用场景

  • 边缘检测:提取物体轮廓和边界。
  • 特征提取:用于后续计算机视觉任务(如目标检测)。
  • 图像锐化:增强图像清晰度。

索贝尔算子

索贝尔算子是一种经典的边缘检测算子,通过计算像素梯度,检测图像的水平和垂直边缘。

 算子公式

水平边缘检测

Kernel_{x} = \begin{bmatrix} -1 & 0 & 1\\ -2 & 0 & 2\\ -1 & 0 & 1 \end{bmatrix}

垂直边缘检测

Kernel_{y} = \begin{bmatrix} -1 & -2 & -1\\ 0 & 0 & 0\\ 1 & 2 & 1 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 检测单方向效果好, 同时双方向效果差# y方向 图像边缘
result1 = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)# x方向 图像边缘
result2 = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)# 合并
result = cv2.add(result1, result2)cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 能检测水平和垂直边缘。
  • 可调整核大小(ksize)以控制平滑程度。

运行结果: y方向和x方向

运行结果: 原图和合成后的图


沙尔算子

沙尔算子是对索贝尔算子的优化版本,它在小窗口(如 3×3)中提供更高的精度。

算子公式

水平边缘检测

Kernel_{x} = \begin{bmatrix} 3 & 0 & -3\\ 10 & 0 & -10\\ 3 & 0 & -3 \end{bmatrix}

垂直边缘检测

Kernel_{y} = \begin{bmatrix} 3 & 10 & 3\\ 0 & 0 & 0\\ -3 & -10 & -3 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 与Sobel类似, 只能求x或y方向的边缘# y方向 图像边缘
result1 = cv2.Scharr(image, cv2.CV_64F, 1, 0)# x方向 图像边缘
result2 = cv2.Scharr(image, cv2.CV_64F, 0, 1)# 合并
result = cv2.add(result1, result2)cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 在处理高频变化的边缘时,精度高于索贝尔算子。
  • 适用于对边缘检测精度要求较高的场景。

拉普拉斯算子

拉普拉斯算子是一种二阶导数算子,结合水平和垂直方向的梯度信息,用于检测图像的边缘。

算子公式

拉普拉斯算子的卷积核常见形式为:

Kernel = \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 可以同时求2个方向的边缘,但是对噪音敏感,需要先降噪
result = cv2.Laplacian(image, cv2.CV_64F, ksize=5)cv2.imshow("image", image)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 同时检测水平、垂直和对角线方向的边缘。
  • 对噪声敏感,适合平滑处理后的图像。

运行结果 


高通滤波器的对比与应用场景

算子特点适用场景
索贝尔结合一阶导数,能检测水平和垂直边缘边缘检测、特征提取
沙尔索贝尔的改进版,适合处理高频变化区域,精度更高精细边缘检测
拉普拉斯二阶导数算子,检测方向无关的边缘,灵敏度高图像锐化、边缘增强
http://www.yayakq.cn/news/871819/

相关文章:

  • 深圳有哪些网站建设公司wordpress 主题 不显示图片
  • 成都专业做网站公司做电商网站注意什么问题
  • 展览网站建设方案哪里可以接网站开发的活
  • 小企业网站维护一年多少钱网站刷新新前台是什么意思
  • 怎样防止别人利用自己的电脑做网站服务器济南网站建设选聚搜网络
  • 泗县网站建设与推广培训运动鞋官方网站建设计划书
  • 企业公司网站建设ppt松江php网站开发培训
  • 神木网站建设设计网站域名后缀cc
  • 我厂有大量手袋订单外发南沙seo培训
  • 服装网站建设怎么写国外网站建设现状图分析
  • 网站建设销售是做什么的怎么用ps做网站效果图
  • 高端网站建设jm3q网站用什么空间好
  • 网站美化软件厂家在哪个app找
  • 百度收录网站标题莒县做网站和微信
  • 辽宁建设厅查询网站简述商务网站建设的步骤
  • 行政单位网站信息建设政策医院网站建设最新报价
  • 网站页面结构怎么做有利于优化域名邮箱申请
  • 破解网站后台狗贩子怎么做网站卖狗
  • 响应式环保网站模板计算机网站建设毕业设计题目
  • 以太坊网站开发wordpress 书架
  • 可以做视频的一个网站营销推广的主要方法
  • 德州宁津建设局网站网站做百度联盟收入已经很低了
  • 网站开发如何报价单哪个网站可以做室内设计
  • 铜川公司做网站网站开发工作好不好
  • 个人网站备案网址做网站的职业
  • 中国建设银行的网站首页四川建设网站信息查询中心
  • 内网穿透做网站网站哪家做的比较好的
  • 网站群建设指南怎么做刷业务网站
  • 玛多县网站建设公司网站怎么做优化步骤
  • 昆山建设投标网站我公司是做网站开发的怎么纳税