当前位置: 首页 > news >正文

企业建站费用情况网络销售许可证

企业建站费用情况,网络销售许可证,企业自己怎么做网站推广,商标生成器在线制作文章目录 摘要Abstract1. 灵感来源——卢曼卡片盒笔记1.1 提出者——卢曼1.2 卡片盒笔记1.3 通过Obsidian实践卢曼卡片盒笔记1.3.1 笔记1.3.2 画布1.3.3 链接 2. 框架2.1 分析原始交互内容 c c c的关键词 K K K、总结 X X X和标签 G G G2.2 连接生成和记忆进化2.3 构造记忆2.4 …

文章目录

摘要

  A‑Mem(Agentic Memory for LLM Agents)是一种面向大模型代理的新型记忆系统,其核心灵感源于 Zettelkasten 卡片盒笔记法。每当代理有一条新的交互记忆被添加时,它会自动生成一条结构化记忆,包括上下文描述、关键词、标签和 embedding 向量。随后,通过语义检索,它检索出 k 条最相似的历史记忆,并借助 LLM 来判断是否应与它们建立连接(Link Generation),并是否需要更新这些旧记忆的上下文与标签(Memory Evolution)。这种机制使得记忆库能够“生长”并“自整理”,在新信息到来时进行动态重构,从而有效增强模型在长期对话和复杂任务中的推理能力与信息调用效率。

Abstract

  A‑Mem (Agentic Memory for LLM Agents) is a novel memory system designed for large-model agents, drawing core inspiration from the Zettelkasten note-taking method. Whenever the agent adds a new interaction memory, it automatically generates a structured memory entry containing a context description, keywords, tags, and an embedding vector. Through semantic retrieval, it then identifies the top k most similar historical memories and employs an LLM to decide whether to establish links with them (Link Generation), and whether these older memories need updates in their context and tags (Memory Evolution). This mechanism allows the memory base to “grow” and “self-organize,” dynamically restructuring itself as new information arrives—effectively enhancing the agent’s reasoning capabilities and efficiency in recalling information during long-term conversations and complex tasks.

1. 灵感来源——卢曼卡片盒笔记

1.1 提出者——卢曼

  卢曼最初是德国的公务员,他在最初开始阅读哲学、组织理论和社会学内容时也像大多数人一样记笔记,过了一段时间,他发现自己的笔记没有任何意义。他开始将笔记全部写在小纸片上,并在纸片角上编号,并把它们存放在卡片盒中。此外,他还意识到一个想法和笔记只有在它的上下文语境中才有价值。于是他思考如何让笔记与不同的上下文联系并起到相应的作用。
  正是这样的笔记方法使得他跻身学术界。他在赫尔穆特·舍尔斯基的建议下到比勒菲尔德大学担任社会学教授。尽管他从没有写过博士论文和定职论文,但是他在卡片盒笔记的帮助下不到一年就完成了博士论文和定职论文。在1968年,他被评为社会学教授,并且终身担任这一职位。此外,在他担任社会学教授之后的30年里,出版了58本著作和数百篇文章(不包括译本)。

1.2 卡片盒笔记

在这里插入图片描述

1.3 通过Obsidian实践卢曼卡片盒笔记

  Obsidian官网:https://obsidian.md/
  Obsidian使用指导:由此开始 - Obsidian 中文帮助 - Obsidian Publish

1.3.1 笔记

  笔记可以添加笔记属性,注明标签、来源和日期等。
在这里插入图片描述

1.3.2 画布

  画布可以更好地组织不同笔记的内容。上面1.2节就是一个画布的例子。

1.3.3 链接

链接方式含义例子
[[要链接笔记的文件名]]链接到整个笔记在这里插入图片描述
[[要链接笔记的文件名#子标题|要显示的文字]]链接到该笔记的某个标题在这里插入图片描述

2. 框架

2.1 分析原始交互内容 c c c的关键词 K K K、总结 X X X和标签 G G G

K , G , X ← LLM ( c ∣ ∣ t ∣ ∣ P s 1 ) P s 1 : 提示词 \begin{aligned}K, G, X&\leftarrow\text{LLM}(c \ || \ t \ || \ P_{s_1})\\P_{s_1}&: 提示词\end{aligned} K,G,XPs1LLM(c ∣∣ t ∣∣ Ps1):提示词
  分析提示词为:

Generate a structured analysis of the following content by:
1. Identifying the most salient keywords (focus on nouns, verbs, and key concepts)
2. Extracting core themes and contextual elements
3. Creating relevant categorical tagsFormat the response as a JSON object:
{"keywords": [// several specific, distinct keywords that capture key concepts and terminology// Order from most to least important// Don't include keywords that are the name of the speaker or time// At least three keywords, but don't be too redundant.],"summary": // one sentence summarizing:// - Main topic/domain// - Key arguments/points// - Intended audience/purpose,"tags": [// several broad categories/themes for classification// Include domain, format, and type tags// At least three tags, but don't be too redundant.]
}Content for analysis: {content}

2.2 连接生成和记忆进化

L , M n e a r ∗ ← LLM ( m ∣ ∣ M n e a r ∣ ∣ P s 2 ) L, M_{near}^*\leftarrow\text{LLM}(m \ || \ M_{near} \ || \ P_{s_2}) L,MnearLLM(m ∣∣ Mnear ∣∣ Ps2)
  首先通过计算嵌入的余弦相似度获取与 m m m相关的前 k k k个记忆,然后分析 m m m原始交互内容与相关记忆集合 M n e a r M_{near} Mnear中每一个记忆 m j m_j mj的原始交互内容的关系:
  1. 判断两者是否需要建立连接,如果需要建立连接,给出对应记忆的id以及 m m m的新标签列表;
  2. 判断是否需要更新相关记忆,如果需要更新相关记忆,给出对应记忆的新总结和新标签列表。
  连接生成和记忆进化提示词为:

You are an AI memory evolution agent responsible for managing and evolving a knowledge base.
Analyze the the new memory note according to keywords and context, also with their several nearest neighbors memory.
Make decisions about its evolution.  The new memory context:
{context}
content: {content}
keywords: {keywords}The nearest neighbors memories:
{nearest_neighbors_memories}Based on this information, determine:
1. Should this memory be evolved? Consider its relationships with other memories.
2. What specific actions should be taken (strengthen, update_neighbor)?2.1 If choose to strengthen the connection, which memory should it be connected to? Can you give the updated tags of this memory?2.2 If choose to update_neighbor, you can update the context and tags of these memories based on the understanding of these memories. If the context and the tags are not updated, the new context and tags should be the same as the original ones. Generate the new context and tags in the sequential order of the input neighbors.
Tags should be determined by the content of these characteristic of these memories, which can be used to retrieve them later and categorize them.
Note that the length of new_tags_neighborhood must equal the number of input neighbors, and the length of new_context_neighborhood must equal the number of input neighbors.
The number of neighbors is {neighbor_number}.
Return your decision in JSON format with the following structure:
{{"should_evolve": True or False,"actions": ["strengthen", "update_neighbor"],"suggested_connections": ["neighbor_memory_ids"],"tags_to_update": ["tag_1",..."tag_n"], "new_context_neighborhood": ["new context",...,"new context"],"new_tags_neighborhood": [["tag_1",...,"tag_n"],...["tag_1",...,"tag_n"]],
}}

2.3 构造记忆

m = { c , t , K , G , X , e , L } c : 原始交互内容 t : 交互的时间戳 K : 大语言模型生成的关键词 G : 大语言模型生成的标签 X : 大语言模型生成的富语言描述 L : 语义相似记忆的列表 \begin{aligned}m&=\{c, t, K, G, X, e, L\}\\\\c&: 原始交互内容\\t&:交互的时间戳\\K&:大语言模型生成的关键词\\G&:大语言模型生成的标签\\X&:大语言模型生成的富语言描述\\L&:语义相似记忆的列表\end{aligned} mctKGXL={c,t,K,G,X,e,L}:原始交互内容:交互的时间戳:大语言模型生成的关键词:大语言模型生成的标签:大语言模型生成的富语言描述:语义相似记忆的列表
   c , K , G , X c,K,G,X c,K,G,X作为文档进行嵌入。

2.4 记忆检索

  通过计算余弦相似度获取前 k k k个相关记忆。

参考

Wujiang Xu, Kai Mei, Hang Gao, and et al. A-Mem: Agentic Memory for LLM Agents.
申克·阿伦斯著,陈琳译。 卡片笔记写作法:如何实现从阅读到写作。

总结

  A-Mem系统基于卢曼卡片盒笔记法,借助大语言模型和语义嵌入技术,实现了记忆的进化和动态更新。在A-Mem中,每个记忆不仅包括原始交互内容,还结合关键词、总结和标签等信息,以便于进一步分析和检索。系统通过计算内容间的相似度,识别相关记忆,并决定是否进行更新或建立新的连接,保持记忆的关联性和时效性。
  记忆的进化过程依赖于两个主要因素:一是根据新记忆与现有记忆之间的相似度,自动生成连接,增强记忆的内在联系;二是在特定情况下,通过更新现有记忆的标签和总结,确保记忆的准确性与持续性。每次进化都会产生新的总结、标签以及上下文,以适应知识的发展与变化。通过这一系统,A-Mem不仅有效管理和存储知识,还能在实际应用中持续优化和拓展记忆库。

http://www.yayakq.cn/news/553375/

相关文章:

  • 艺术家个人网站设计专业的集团网站制作企业
  • 前端网站做中 英文怎么说如何免费建设自己稳定的网站
  • 苏州有哪些做网站公司平面设计的素材网站
  • 做电子请帖的网站品牌策划公司是做什么的
  • 校园网站建设目的wordpress下不了插件吗
  • 网站开发用什么框架好成都市建筑设计研究院有限公司
  • 手表网站制作模板网站首页制作案例
  • 做网站主色调选择搭建本地网站做色流
  • 公众号与网站网站创意文案怎么做
  • 国外优秀个人网站欣赏9377手游平台
  • wordpress重新打开多站点物流网站免费源码
  • 哔哩哔哩官方网站首页wordpress move下载
  • 创免费网站08wordpress
  • 网站换空间商什么意思WordPress建站布置
  • 北京 外贸型网站建设wordpress获取文章作者
  • 微信公众号 视频网站开发站长工具ping检测
  • 在线网站创做简历创建一个网站需要做哪些准备
  • 河南省建设厅网站总经济师邹城市建设局网站
  • 达州网站建设yufanse新加坡网站域名
  • 网站毕设东莞哪家建网站公司好
  • 建设好网站为什么读取不到文件互联网广告联盟
  • 手机域名网站怎么做网站项目需要什么
  • wordpress不同分类文章不同模板优化大师有必要花钱吗
  • 做一个网站需要多少钱大概费用wordpress左右滑动
  • 专做五金正品的网站海口高端品牌网站建设
  • 网站建设验收单格式东莞建筑设计公司排名
  • html5网站是用什么软件做的制作器
  • 自动的网站制作烟台网站建设公司地址
  • 建站哪个网站好四川城乡建设网站
  • 湖北响应式网站建设费用网上网站建设教程