当前位置: 首页 > news >正文

网站这么上百度网站制作视频课程

网站这么上百度,网站制作视频课程,漯河市疾控中心最新消息,大学生app开发经费预算583. 两个字符串的删除操作 动规五部曲 1、确定dp数组(dp table)以及下标的含义 dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。 2、确定递推…

583. 两个字符串的删除操作

动规五部曲

1、确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

2、确定递推公式

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么在删 word1[i - 1],就达到了两个元素都删除的效果,即 dp[i][j-1] + 1

3、dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

4、确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

5、举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);}}}return dp[word1.size()][word2.size()];}
};

思路二

只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return word1.size() + word2.size() - dp[word1.size()][word2.size()] * 2;}
};

72. 编辑距离

动规五部曲

1、确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

2、确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

if (word1[i - 1] != word2[j - 1])

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i][j - 1] + 1;

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd'word2添加一个元素'd',变成word1="a", word2="ad"

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

3、dp数组如何初始化

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

4、确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

所以在dp矩阵中一定是从左到右从上到下去遍历。

 5、举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;}}}return dp[word1.size()][word2.size()];}
};

 

编辑距离总结

编辑距离从判断子序列->判断子序列 ->不同的子序列 ->两个字符串的删除操作->编辑距离

以上四个题都是从最初子序列开始,在原本一个子序列的基础上,变成了二维,通过观察每次解题代码可以发现,其实各题在解题思路上都几乎类似,难点在于递推公式的推导与初始化,递推公式的推导要在理解各题要求的同时,思考该如何得出当前状态,时刻谨记dp数组的定义有利于递推公式推导

http://www.yayakq.cn/news/171450/

相关文章:

  • 江西企业网站建设哪家好做断桥铝最知名的网站
  • 新增网站和新增接入怎样用腾讯云做网站
  • 滨州网站建设九鲁电视剧百度搜索风云榜
  • 互助县公司网站建设教育培训网站建设ppt
  • 建设个人网站ip中国制造网app官方下载
  • 英文外贸网站模板wordpress更改ip后登录
  • 建大型网站要多少钱怎么做外贸网站seo
  • 哪一个军事网站做的比较好怎么样引流顾客到店方法
  • 公司的网站建设费进入什么科目wordpress 科技
  • dw做的网站如何让文字换行企业搭建什么样的平台
  • 网站没制作好可以备案吗wordpress版权修改插件
  • 网站设计基本结构北戴河区建设局网站
  • 网站seo技术教程成全视频在线观看免费看
  • 比较好的做网站公司搜索引擎营销的主要模式有哪些?
  • 手机网站后台模板做智能网站软件
  • 平潭综合实验区建设局网站管理网站建设哪里好
  • ui图标素材网站长沙人才网官网
  • 我的个人博客网站开发板
  • 代理是干什么的西安百度seo排名软件
  • 西安宝马建设科技股份有限公司网站网站被挟持怎么办
  • 用wordpress建一个网站wordpress修改图片
  • 网站标题设置阿里云购买网站空间
  • 网站 icp备案小工程承包网
  • 做图片网站 侵权网站建设后的优势
  • 海安网站优化宿迁手机网站建设公司
  • 源码论坛网站需要多大的空间wordpress 代码开发
  • 河南如何做网站wordpress 迁移后台空白
  • 如何查询网站备案时间查询网站备案号怎么看
  • 网站建设的系统分析wordpress投稿者后台
  • 学设计多少钱商城网站的seo优化改怎么做