当前位置: 首页 > news >正文

营销网站开发渠道有哪些软件项目管理论文3000字

营销网站开发渠道有哪些,软件项目管理论文3000字,天津网站建设报价,重庆网站推广公司电话一、概念 长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入三个门(输入门、遗忘门和输出门&#xff09…

一、概念

        长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入三个门(输入门、遗忘门和输出门)来控制信息的流动。其中,每个门都是一个神经网络层,用于决定哪些信息应该被保留,哪些信息应该被丢弃。LSTM的核心是细胞状态(cell state),它通过这些门的控制来更新和传递信息。

二、核心算法

        令x_{t}为时间步 t 的输入向量,h_{t-1}为前一个时间步的隐藏状态向量,h_{t}为当前时间步的隐藏状态向量,C_{t-1}为前一个时间步的细胞状态向量,C_{t}为当前时间步的细胞状态变量,f_{t}为当前时间步的遗忘门向量,i_{t}为当前时间步的输入门向量,\bar{C_{t}}为当前时间步的候选细胞状态向量,o_{t}为当前时间步的输出门向量,W_{f},W_{i},W_{C},W_{o}分别为各门的权重矩阵,b_{f},b_{i},b_{C},b_{o}为偏置向量,\sigma为sigmoid激活函数,tanh为tanh激活函数,*为元素级乘法。LSTM的核心内容包括以下几个部分:

1、遗忘门(Forget Gate)

        遗忘门决定细胞状态中哪些信息需要被遗忘。通过sigmoid激活函数,遗忘门的输出在0到1之间,表示每个细胞状态元素被保留的比例。

f_{t} = \sigma(W_{f} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{f})

2、输入门(Input Gate)

        输入门决定哪些新的信息需要被写入细胞状态。通过sigmoid激活函数,输入门的输出在0到1之间,表示每个候选细胞状态元素被写入的比例。候选细胞状态通过tanh激活函数生成,表示新的信息。

i_{t} = \sigma(W_{i} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{i})

\bar{C}_{t} = tanh(W_{C} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{C})

3、细胞状态更新

        细胞状态结合遗忘门和输入门的结果进行更新。遗忘门的输出与前一个时间步的细胞状态相乘,表示保留的旧信息。输入门的输出与候选细胞状态相乘,表示写入的新信息。两者相加得到当前时间步的细胞状态。

C_{t} = f_{t} \ast C_{t-1}+i_{t} \ast \bar{C}_{t}

4、输出门(Output Gate)

        输出门决定细胞状态的哪些部分将作为输出。通过sigmoid激活函数,输出门的输出在0到1之间,表示每个细胞状态元素被输出的比例。细胞状态通过tanh激活函数进行非线性变换,然后与输出门的输出相乘,得到当前时间步的隐藏状态。

o_{t} = \sigma(W_{o} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{o})

h_{t} = o_{t} \ast tanh(C_{t})

三、python实现

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split# 生成正弦波数据
def generate_sine_wave(seq_length, num_samples):x = np.linspace(0, num_samples, num_samples)y = np.sin(x)data = []for i in range(len(y) - seq_length):data.append(y[i:i+seq_length+1])return np.array(data)# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers):super(LSTMModel, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)out, _ = self.lstm(x, (h0, c0))out = self.fc(out[:, -1, :])return out# 超参数设置
seq_length = 50
num_samples = 1000
input_size = 1
hidden_size = 50
output_size = 1
num_layers = 2
batch_size = 64
learning_rate = 0.001
num_epochs = 5
test_size = 0.2  # 测试集占比# 生成数据
data = generate_sine_wave(seq_length, num_samples)
X = data[:, :-1]
y = data[:, -1]# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)# 转换为Tensor
X_train = torch.tensor(X_train.reshape(-1, seq_length, input_size), dtype=torch.float32)
y_train = torch.tensor(y_train.reshape(-1, output_size), dtype=torch.float32)
X_test = torch.tensor(X_test.reshape(-1, seq_length, input_size), dtype=torch.float32)
y_test = torch.tensor(y_test.reshape(-1, output_size), dtype=torch.float32)# 创建数据加载器
train_dataset = torch.utils.data.TensorDataset(X_train, y_train)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = torch.utils.data.TensorDataset(X_test, y_test)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)# 初始化模型、损失函数和优化器
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# 训练模型
for epoch in range(num_epochs):model.train()for i, (inputs, labels) in enumerate(train_loader):outputs = model(inputs)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')# 测试模型
model.eval()
with torch.no_grad():predicted = []actual = []for inputs, labels in test_loader:outputs = model(inputs)predicted.extend(outputs.numpy())actual.extend(labels.numpy())# 绘制结果
plt.plot(actual, label='Actual data')
plt.plot(predicted, label='Predicted data')
plt.legend()
plt.show()

四、总结

        LSTM能够捕捉长时间依赖关系,使得模型在处理长序列数据时表现得比标准的RNN更好。但由于LSTM的计算依赖于前一个时间步的输出,这使得这样的网络结构难以并行化,在处理大规模数据时的效率较低。

http://www.yayakq.cn/news/123566/

相关文章:

  • 网站做的好的创意广告图片
  • 顺企网吉安网站建设3d做号网站
  • 高端做网站哪家好网站上线稳定后的工作
  • 网站建设建设多少钱wordpress 后台地址修改
  • 网站建设7个基本流程分析PC端网站开发以及设计费用
  • 做平台网站怎么赚钱为什么要网站建设
  • 西安网站建设排行榜点胶喷嘴技术支持东莞网站建设
  • 杭州知名的网站建设策划网站如何注册微信公众平台 类型
  • 做网站推广的公司好做吗建设营销型网站模板
  • 如何制作网站?微信小程序订单系统
  • 做网站设计的有些什么职位dede5.7内核qq个性门户网站源码
  • 网站建设维护网页设计贵州建设厅特殊工种考试网站
  • 怎样建设团学组织微信网站企业法治建设工作计划
  • 网页游戏修改器关键词优化ppt
  • 正规培训机构有哪些上海营销seo
  • 合肥网站制作费用wordpress多媒体大小
  • 二级域名怎么做网站备案wordpress 下载站
  • 大气网站首页模板大美南京网站
  • 做网站的时候会用 鸟瞰图吗广州品牌设计公司
  • 推荐10个优秀的国外ui设计网站动漫制作技术和动漫设计
  • 教育网站做婚姻网站赚钱
  • 哪个网站做美食视频深圳市年检在哪个网站做
  • 地区汽车修理网站建设网站建设重点步骤
  • 网站欢迎页面flashphp wordpress joom
  • 学校为什么要建设网站北京众合天下管理咨询有限公司
  • 泰安放心的企业建站公司有个做h手游的网站
  • 网站可以做软著吗老区建设网站
  • 贵州西能电力建设有限公司网站改行做网站
  • 京东网站开发多少钱网络规划设计师2017至2021年试题分析与解答 pdf
  • 电子商务网站建设的核心是什么wordpress mysql类