当前位置: 首页 > news >正文

汽车网站建设规划书网页开发技术有哪些

汽车网站建设规划书,网页开发技术有哪些,深圳网站建设叶林,h5编辑软件LoraConfig()介绍 LoraConfig()是peft库中的一个配置类,用于设置大模型微调方法LoRA(Low-Rank Adaptation)的相关参数。PEFT 库为各种参数高效的微调方法(如 LoRA)提供了封装,以减少微调大模型时的计算资源…

LoraConfig()介绍

LoraConfig()peft库中的一个配置类,用于设置大模型微调方法LoRA(Low-Rank Adaptation)的相关参数。PEFT 库为各种参数高效的微调方法(如 LoRA)提供了封装,以减少微调大模型时的计算资源和存储需求。

LoraConfig()参数说明

1、task_type

描述: 用来指定 LoRA 要适用于的任务类型。不同的任务类型会影响模型中的哪些部分应用 LoRA 以及如何配置 LoRA。根据不同的任务,LoRA 的配置方式可能会有所不同,特别是在模型的某些特定模块(如自注意力层)上。

可选值:

  • "CAUSAL_LM": 自回归语言模型(Causal Language Modeling)。适用于像 GPT 这样的自回归语言模型,这类模型通常在生成任务上使用。
  • "SEQ_2_SEQ_LM": 序列到序列语言模型(Sequence-to-Sequence Language Modeling)。适用于像 T5 或 BART 这样的序列到序列模型,这类模型通常用于翻译、摘要生成等任务。
  • "TOKEN_CLS": 标注任务(Token Classification)。适用于命名实体识别(NER)、词性标注等任务。
  • "SEQ_CLS": 序列分类(Sequence Classification)。适用于句子分类、情感分析等任务。
  • "QUESTION_ANSWERING": 问答任务(Question Answering)。适用于问答模型,如 SQuAD 等数据集中的任务。
  • "OTHER": 适用于其他自定义任务,或者模型的任务类型不明确时。

2、target_modules:

  • 描述: 指定应用 LoRA 的目标模型模块或层的名称。这些是模型中应用 LoRA 低秩分解的参数,通常是网络中的线性层(如 query, value 矩阵)。
  • **数据类型:**Union[List[str], str]
  • 默认值: None
  • 典型值: ["query", "value"] 或类似参数,具体依赖于模型结构。

3、r(Rank Reduction Factor):

  • 描述:LoRA 的低秩矩阵的秩(rank)。r 是低秩矩阵的秩,表示将原始权重矩阵分解成两个更小的矩阵,其乘积近似原始权重矩阵。r 越小,模型的计算开销越低。
  • 数据类型:int
  • 典型值:通常在 4 到 64 之间。

4、lora_alpha

  • 描述:缩放因子,用于缩放 LoRA 的输出。通常在 LoRA 层的输出会被 lora_alpha / r 缩放,用来平衡学习效率和模型收敛速度。
  • 数据类型:int
  • 典型值:r 的 2 到 32 倍之间。

5、lora_dropout

  • 描述:应用于 LoRA 层的 dropout 概率。这个参数用来防止过拟合,特别是在小数据集上训练时,使用 dropout 可以提高模型的泛化能力。
  • 数据类型:float
  • 典型值:0.1 或者更低。

6、bias

  • **描述:**用于控制是否训练模型的偏置项(bias)。可以设置为 none(不训练 bias)、all(训练所有 bias)、或者 lora_only(仅对 LoRA 层的偏置项进行训练)。
  • 数据类型:str
  • 典型值:nonelora_only

7、modules_to_save :

  • 描述: 指定除了 LoRA 层之外,还需要保存哪些额外的模块。这通常用于微调时只保存 LoRA 层的权重,同时保存某些特殊的模块(例如全连接层)。
  • 数据类型:Optional[List[str]]
  • 默认值: None
  • 典型值: ["classifier", "pooler"] 或类似参数。

8、init_lora_weights :

  • 描述: 控制 LoRA 层的权重是否在初始化时进行随机初始化。如果设置为 True,则会使用标准初始化方法;否则,将不进行初始化。
  • 数据类型:bool
  • 默认值: True

9、inference_mode :

  • 描述: 如果设置为 True,则模型只在推理阶段使用 LoRA。此模式下,LoRA 的权重会被冻结,不会进行训练。适用于将微调后的模型用于推理场景。
  • 数据类型:bool
  • 默认值: False

参数组合示例

下面是一个配置 LoRA 的例子,使用 LoRA 对自注意力层中的 queryvalue 矩阵进行低秩分解,并使用 dropout:

from peft import LoraConfig, TaskTypelora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,  # 微调模型为自回归模型r=16,  # LoRA 低秩分解的秩lora_alpha=32,  # LoRA 缩放因子target_modules=["query", "value"],  # 目标模块lora_dropout=0.1,  # Dropout 概率bias="none",  # 不训练 biasmodules_to_save=["classifier"],  # 额外保存分类器模块init_lora_weights=True,  # 初始化 LoRA 层权重inference_mode=False  # 允许训练
)

参数总结

  • rlora_alpha 决定了 LoRA 的低秩分解程度及其影响范围。
  • target_modules 决定了 LoRA 应用于哪些层,通常是模型的关键参数层。
  • lora_dropoutbias 提供了额外的正则化和训练细节控制。
  • modules_to_save 则可以灵活地控制哪些部分需要保存,确保推理时模型可以正确加载。

注意:

1、常用的参数就task_type、target_modules、inference_mode、r、lora_alpha、lora_dropout这些

2、按任务需求和算力配置r大小,r不是越大越好

参考文献:

1、Lora微调训练参数解读_lora微调参数详解-CSDN博客

2、PEFT LoraConfig参数详解-CSDN博客

http://www.yayakq.cn/news/729994/

相关文章:

  • 洛谷网站中小玉文具怎么做深圳购物网站建设报价
  • 自己做的网站可以买东西吗徐州自动seo
  • 厦门网站建设 孚珀科技有空间怎么做网站
  • 衡水网站设计费用小公司网站如何做
  • 团购产品 网站建设编辑制作网页的基础是
  • 外贸联系网站镇江哪里做网站
  • 外包做的网站怎么维护织梦批量修改网站源代码
  • 如何注册域名?成本多少百度关键词seo排名软件
  • python做的网站如何部署网页图片保存
  • 做简单网站需要学什么软件有哪些做网站的公司吉林
  • 企业网站手机端跳转设置wordpress怎么给网站设置几种语言
  • 建网站 企汇网最低多少钱可以注册公司
  • 建站 手机网站北京app开发定制公司
  • 彩妆网站建设简述网站开发步骤
  • 网站建设属于前端还是后台waP六感程序建设网站
  • 个人网站的设计与实现摘要沈阳建设工程许可公示版
  • 学校网站建设主体备案用什么网站名称好
  • 网站控制板面多语种网站怎么做搜索引擎排名
  • 网站内容和功能清单卫生计生加强门户网站建设
  • 郴州企业网站建设制作天河做网站设计
  • 汕头网站建设推广建设教育协会培训网站
  • 广州网站seo营销模板上线了做的网站怎么办
  • 如何线下宣传网站铁岭 开原网站建设
  • 需要企业网站开发事业单位网站开发工作规程
  • 织梦的手机端网站建站快车代理商
  • 合肥 网站平台建设公司品牌网站首页设计
  • 子网站如何做徐州网站建设网站制作
  • 可做实名认证的网站电子商务网站规划开发实训教程
  • 社交网站做强王烨身世
  • 做二手电脑的网站网站开发需要哪些部门