当前位置: 首页 > news >正文

公司要建个网站图书馆 网站建设

公司要建个网站,图书馆 网站建设,logo生成,怎样判断网站的好坏本文主要记录的是笔者在B站自学Numpy库的学习笔记。 引入numpy库 import numpy as np矩阵的创建 创建一个二行三列的矩阵。 array np.array([[1,2,3],[2,3,4]])查看array的行数、形状、元素数量 print("number of dim:",array.ndim) print("shape:"…

本文主要记录的是笔者在B站自学Numpy库的学习笔记。

引入numpy库

import numpy as np

矩阵的创建

创建一个二行三列的矩阵。

array = np.array([[1,2,3],[2,3,4]])

查看array的行数、形状、元素数量

print("number of dim:",array.ndim) 
print("shape:",array.shape)
print("size:",array.size)

执行结果:
在这里插入图片描述
其中
ndim显示的是它的行数;
shape显示的是它的形状(2行3列的矩阵);
size显示的是它的元素数量(6个)

创建0矩阵

array = np.zeros((4,5)) #4行5列的0矩阵

执行结果:
在这里插入图片描述

创建全1矩阵

array = np.ones((4, 5),dtype=int)  # 4行5列的全1矩阵并用dtype属性设置成int类型

执行结果:
在这里插入图片描述

创建有步长的一维矩阵

array = np.arange(1,22,3)  # [1,22)步长为3的一维矩阵

执行结果
在这里插入图片描述

用reshape方法创建多维矩阵

array = np.arange(20).reshape((4,5))  # 4行5列0~19的矩阵

执行结果
在这里插入图片描述

创建一维序列线段

array = np.linspace(10,30,6)  # 一行从10到30,6个步长的序列线段

执行结果
在这里插入图片描述

创建多维序列线段

array = np.linspace(10, 30, 6).reshape((3,2))  # 3行2列从10到30,6个步长的序列线段

执行结果
在这里插入图片描述

生成多维随机数矩阵

array = np.random.random((3,5))  # 3行5列从0到1的随机数

我们还可以使用numpy内置的一些方法进行数值计算,比如求和、搜索最大值、走索最小值、按行求和、按列求最小值、按行求最大值等等(axis=1时表示横向,axis=0表示纵向)。

np.sum(array) #将元素求和
np.min(array)  # 将元素求最小值
np.max(array)  # 将元素求最大值
np.sum(array,axis=1)  # 按行求和
np.min(array, axis=0)  # 按列求最小值
np.max(array, axis=1)  # 按行求最大值

执行结果
在这里插入图片描述

矩阵相加

矩阵相加,只需要简单的用+号就可以完成。

a = np.array([4,5,6,7,8])
b = np.arange(5)
c = a+b

执行结果
在这里插入图片描述

矩阵点乘

矩阵点乘指的是矩阵之间对应位置元素相乘。
用刚才的b矩阵点乘自身。

b = b**2

执行结果
在这里插入图片描述

c = np.array([[1,1,1],[0,1,2],[2,3,4]])
d = np.arange(9).reshape((3,3))
e = c*d #c矩阵和d矩阵进行点乘

运行结果:
在这里插入图片描述

矩阵叉乘

矩阵叉乘就是我们在线性代数里面学的“矩阵乘法”。
叉乘使用的方法是dot()。两种写法:

dot = np.dot(c,d)
dot = c.dot(d) 

执行结果:
在这里插入图片描述

矩阵的元素布尔判断

判断a矩阵里的元素是否比6大

a > 6

执行结果:
在这里插入图片描述

一些常用的运算

例如找最大元素的索引、最小元素索引、计算平均值、计算中位数、计算逐项累加值、计算逐项差值、寻找非0元素下索引、逐行排序、矩阵转置、矩阵自叉乘、按列计算平均值、滤波操作等。

array = np.arange(2, 14).reshape((3, 4))np.argmax(array)   # 最大值索引
np.argmin(array)  # 最小值索引
array.mean()  # 计算平均值
np.average(array)  # 计算平均值
np.median(array)  # 计算中位数
pnp.cumsum(array)  # 计算逐项累加值
np.diff(array)  # 计算逐项差值
np.nonzero(array)  # 给出非0元素的下标
np.sort(array)  # 逐行排序
np.transpose(array)  # 矩阵的转置
array.transpose()  # 矩阵的转置
array.T  # 矩阵的转置
(array.T).dot(array)  # 矩阵转置后叉乘
np.mean(array, axis=0)  # 按列计算平均值
np.clip(array, 5, 9)  # 滤波,设置小于5的数等于5,大于9的数等于9

运行结果:
在这里插入图片描述
关于非0元素下标,输出的是两个一位数组,分别代表非0元素的x轴位置和y轴位置。

矩阵索引

array = np.arange(0,16).reshape((4,4)) array[2]	#获取第二行的所有元素
array[2][1]	#获取第2行第1列的元素
array[2,1]   #也可以这么写
array[:,1]   #第1列所有数
array[1, 1:3]  # 第1行第1列到第3列之前所有数
array.flatten()  #拉平矩阵

运行结果:
在这里插入图片描述

矩阵的合并

a = np.array([1,2,3])
b = np.array([4,5,6])
np.vstack((a, b))  # 上下合并 v:vertical
np.hstack((a, b))  # 左右合并 h:horizontal

运行结果
在这里插入图片描述

一维矩阵的转置

对单行序列不可以通过转置的方式得到单列的序列,直接写a.T是转置不了a的。通过a.shape可以得到:(3,),说明现在只有一个维度,而转置是两个维度的事情。所以可以通过newaxis的方式添加纵向维度来达到转置的目的。

a[:,np.newaxis] #[横向维度,纵向维度]

如果还要转置回来,a.T可不可以达到目的呢?也不可以。通过a.shape还是会得到:(3,),说明此时a还是被看作是一维的数组。再转置回来怎么办?那就通过添加横向纬度来转置!

a[np.newaxis,:]

运行结果:
在这里插入图片描述

矩阵的分割

用split、vsplit、hsplit可以进行等份分割,用array_split可以进行不等份分割

a = np.arange(20).reshape((4, 5))
np.split(a, 5, axis=1)  # 分割后成横向排列,也就是对列进行等分分割,分割成5部分
np.split(a, 2, axis=0)   # 分割后成纵向排列,也就是对行进行等分分割,分割成2部分
#等效写法:
np.vsplit(a, 2)   #等份分割后成纵向
np.hsplit(a, 5)   #等份分割后成横向
#不等分划分
np.array_split(a, 3, axis=1)  #不等份分割成4份后成横向

运行结果:
在这里插入图片描述
“成横向”的意思是分割完毕后每一组是横向摆,同理“成纵向”是分割完毕后每一组是纵向摆。

浅拷贝与深拷贝

假设现在有两个矩阵array1,array2。
浅拷贝的写法是:array2 = array1; 这种写法只是array2对array1的简单引用,也就意味着对array1的属性进行修改时,array2的属性也会跟着变,说白了此时array2就是array1。类似于C语言的地址传递(实参传递)。
深拷贝的写法是:array2 = array1.copy(); 这种写法是将array1的所有属性及参数一并拷贝给array2,但是array2并不对array1进行引用。这也就意味着,array1的属性改变时,不会影响array2的属性。类似于C语言的值传递(形参传递)

array1 = np.arange(4)
os.system("cls")
print("当前array1:\n",array1,"\n")
array2 = array1  #  浅拷贝。类似于地址传递,实参赋值
print("array2浅拷贝array1:\n",array2,"\n") 
array2[2] = 6
print("array2[2]修改后的array2:\n",array2,"\n") 
print("array2[2]修改后的array1:\n",array1,"\n") #  array2 和 array是同一个东西
array1[1:3] = [8,9]
print("array1[1:3]修改后的array1:\n",array1,"\n") 
print("array1[1:3]修改后的array2:\n",array2,"\n") # 深拷贝
array3 = array1.copy()
print("array3深拷贝array1:\n",array3,"\n") 
array1[0] = 7
print("array1[0]修改后的array1:\n",array1,"\n")
print("array1[0]修改后的array3:\n",array3,"\n")

运行结果:
在这里插入图片描述

敬请批评指正。

http://www.yayakq.cn/news/950193/

相关文章:

  • 网站搭建商上海好看大方的企业网站源码.net
  • 用宝塔给远程网站做备份报社网站建设方案
  • 品牌网站什么意思上海人才引进政策
  • 邦拓网站建设wordpress接入qq登陆
  • 在越南做网站需要什么完整网站开发视频
  • 海宁做网站的公司月夜影院
  • 广州做网站优化河北手机版建站系统哪个好
  • 广州手机网站制作全国企业注册官方网
  • 汽车交易网站系统建设WordPress之类的
  • 主营网站开发做网站的软件电子
  • 网站开发的权限设置如何在百度上添加自己的店铺
  • 蒲城网站建设wzjseo网上商城取名
  • 淘宝客如何做淘宝客网站推广传奇网址大全
  • 各大高校的校园网站建设建局域网网站
  • 盐城哪家做网站的正规流媒体网站建设规划
  • 网站对应不同域名深圳网站建设一尘互联
  • 品牌网站都有哪些dede资讯类网站模板
  • 酒店团购的网站建设设计软件网站制作网站建设
  • 网站主服务器所在地地址住房和城乡建设部网站注册
  • 网站开发逻辑图wordpress插件百度
  • 济南槐荫网站开发公司公司注册网站的费用多少
  • 网站建设公司哪家强灵川网站制作
  • 开普网站建设公司公司起名字大全免费4个字
  • 做网站建设的电话销售微信小程序免费制作平台
  • 食品加工设备建站方案个人开店的电商平台
  • 虎丘网站建设代理服务器上外网
  • 晋州有做网站的吗网站中备案与不备案的区别
  • 请简要描述如何进行网站设计规划律师事务所网站方案
  • 网站过期怎么找回来电子商务网站的建设论文
  • 公司网站建设宣传公司淄博学校网站建设定制