当前位置: 首页 > news >正文

西宁建站惠州网站设计

西宁建站,惠州网站设计,宁波新闻,计算机网络工程师HALCON为分类和语义分割提供了预训练的神经网络。当训练自定义网络时,这些神经网络是很好的起点。它们已经在一个大型图像数据集上进行了预训练。对于异常检测,HALCON提供了初始模型。 用于 3D 抓取点检测的模型 为 3D 抓取点检测提供了以下网络&#xf…

        HALCON为分类和语义分割提供了预训练的神经网络。当训练自定义网络时,这些神经网络是很好的起点。它们已经在一个大型图像数据集上进行了预训练。对于异常检测,HALCON提供了初始模型。

     

用于 3D 抓取点检测的模型

       为 3D 抓取点检测提供了以下网络:

'pretrained_dl_3d_gripping_point.hdl'

       网络最多需要 5 个类型的图像 :real

       'image':强度(灰度值)图像

       'x':X 图像(值需要从左到右增加)

       'y':Y 图像(值需要从上到下增加)

       ‘z’: z图像(值需要从靠近传感器的点增加到远点;例如,如果数据是在相机坐标系中给出的情况)

       ' normals':2D 映射

       此外,网络需要某些图像属性(对于上面提到的所有输入图像)。可以使用get_dl_model_param检索相应的值。默认值:

       “image_width”: 640

       “image_height”: 480

       网络架构允许对图像尺寸进行更改。

异常检测模型

      异常检测主要检测数据中的离群点,异常数据的特征值与正常数据的特征值距离较远。

      提供了以下网络用于异常检测:

'initial_dl_anomaly_medium.hdl'

      此神经网络旨在提高内存和运行时效率。

      网络期望图像是这种类型的。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:       

      “image_width”:480

      “image_height”: 480

      “image_num_channels”: 3

      “image_range_min”: -2

      “image_range_max”: 2

      网络架构允许更改图像尺寸,但是‘image_width’和‘image_height’的大小必须是32像素的倍数,因此最少为32像素

'initial_dl_anomaly_large.hdl'

      这种神经网络被认为更适合于更复杂的异常检测任务。这样做的代价是需要更多的时间和内存。

    网络期望图像是这种类型的。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:  

      “image_width”: 480

      “image_height”: 480

      “image_num_channels”: 3

      “image_range_min”: -2

      “image_range_max”: 2

      网络架构允许更改图像尺寸,但是‘image_width’和‘image_height’的大小必须是32像素的倍数,因此最少为32像素。

全局上下文异常检测模型

       “全局上下文异常值检测”是一种独一无二的技术,能够“理解”整个图像的逻辑内容。 与 HALCON 先前异常值检测功能一样,新的“全局上下文异常检测”只需要训练无缺陷图像,无需数据标记。 这项技术可以检测组件缺失、变形或者排布错位等异常,在半导体生产中的印刷电路板检测场景、印刷痕迹的检测场景也有非常优秀的表现。

      为全局上下文异常检测提供了以下网络:

“pretrained_dl_anomaly_global_context.hdl”

      网络期望图像是这种类型的。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:256

      “image_height”:256

      “image_num_channels”:3

      “image_range_min”:-127.0

      “image_range_max”:128.0

分类模型:

      提供以下预训练神经网络用于分类,并可作为检测的骨干:

'pretrained_dl_classifier_alexnet.hdl':

      这个神经网络是为简单的分类任务而设计的。它的特点是第一层卷积核比其他具有类似分类性能的网络(例如pretrained_dl_classifier_compact.hdl)中的卷积核要大。这可能有利于特征提取。

      此分类器期望图像属于该类型。此外,该网络是为某些图像属性设计的。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”: 224

      “image_height”: 224

      “image_num_channels”: 3

      “image_range_min”: -127.0

      “image_range_max”: 128.0

      网络架构允许对图像尺寸进行更改。‘image_width’和‘image_height’不应小于29像素。没有最大图像大小限制,但是大的图像大小会显著增加内存需求和运行时间。改变图像大小将重新初始化完全连接层的权重,因此需要重新训练。

      请注意,可以通过融合卷积层和ReLU层来改善该网络的运行时间,参见set_dl_model_param和参数‘fuse_conv_relu’。

“pretrained_dl_classifier_compact.hdl”:

      这种神经网络被设计成具有更高的内存和运行效率。

      分类器期望图像属于该类型。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:224

      “image_height”:224

      “image_num_channels”:3

      “image_range_min”:-127.0

      “image_range_max”:128.0

      该网络不包含任何完全连接的层。网络架构允许对图像尺寸进行更改。‘image_width’和‘image_height’不应小于15像素。

“pretrained_dl_classifier_enhanced.hdl”:

      这个神经网络比pretrained_dl_classifier_compact有更多的隐藏层。因此被认为更适合于更复杂的分类任务。这样做的代价是需要更多的时间和内存。

      分类器期望图像属于该类型。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:224

      “image_height”:224

      “image_num_channels”:3

      “image_range_min”:-127.0

      “image_range_max”:128.0

      网络架构允许对图像尺寸进行更改。‘image_width’和‘image_height’不应小于47像素。没有最大图像大小限制,但是大的图像大小会显著增加内存需求和运行时间。改变图像大小将重新初始化完全连接层的权重,因此需要重新训练。

'pretrained_dl_classifier_mobilenet_v2.hdl':

      这个分类器是一个小而低功耗的模型,因为什么原因它更适合于移动和嵌入式视觉应用。

      分类器期望图像属于该类型。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:224

      “image_height”:224

      “image_num_channels”:3

      “image_range_min”:-127.0

      “image_range_max”:128.0

      网络架构允许对图像尺寸进行更改。‘image_width’和‘image_height’不应小于32像素。没有最大图像大小限制,但是大的图像大小会显著增加内存需求和运行时间。

      在GPU上,网络架构可以从特殊的优化中受益匪浅,没有这些优化,网络就会明显变慢。

'pretrained_dl_classifier_resnet18.hdl':

      随着神经网络pretrained_dl_classifier_enhanced。这个分类器适用于更复杂的任务。然而,由于其特殊的结构,它提供了使训练更稳定和内部更鲁棒的优势。与神经网络pretrained_dl_classifier_resnet50相比。它不那么复杂,推理时间也更快。

      分类器期望图像属于该类型。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:224

      “image_height”:224

      “image_num_channels”:3

      “image_range_min”:-127.0

      “image_range_max”:128.0

      网络架构允许对图像尺寸进行更改。‘image_width’和‘image_height’不应小于32像素。没有最大图像大小限制,但是大的图像大小会显著增加内存需求和运行时间。尽管是完全连接层,图像大小的改变并不会导致权重的重新初始化。

'pretrained_dl_classifier_resnet50.hdl':

        随着神经网络pretrained_dl_classifier_enhanced。这个分类器适用于更复杂的任务。然而,由于其特殊的结构,它提供了使训练更稳定和内部更鲁棒的优势。

      分类器期望图像属于该类型。此外,网络需要某些图像属性。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:224

      “image_height”:224

      “image_num_channels”:3

      “image_range_min”:-127.0

      “image_range_max”:128.0

      网络架构允许对图像尺寸进行更改。‘image_width’和‘image_height’不应小于32像素。没有最大图像大小限制,但是大的图像大小会显著增加内存需求和运行时间。尽管是完全连接层,图像大小的改变并不会导致权重的重新初始化。

语义分割模型

      语义分割结合了图像分类、目标检测和图像分割,通过一定的方法将图像分割成具有一定语义含义的区域块,并识别出每个区域块的语义类别,实现从底层到高层的语义推理过程,最终得到一幅具有逐像素语义标注的分割图像。

      以下预训练神经网络用于语义 分割:

'pretrained_dl_edge_extractor.hdl':

      该神经网络是为边缘提取而设计和预训练的。因此,该模型适用于两类问题,一类用于边缘,一类用于背景。

      该网络期望图像是该类型的。此外,该网络是为某些图像属性设计的。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:512

      “image_height”:512

      “image_num_channels”:1

      “image_range_min”:-127.0

      “image_range_max”:128.0

      “num_classes”:2

      网络架构允许更改图像尺寸,但是‘image_width’和‘image_height’的大小必须是16像素的倍数,因此最少为16像素。

“pretrained_dl_segmentation_compact.hdl”:

      该神经网络设计用于处理具有详细结构的分割任务,并且仅使用少量内存并且运行时效率高。

      网络架构允许更改图像尺寸,但要求最小的“image_width”和“image_height”为21像素。

“pretrained_dl_segmentation_enhanced.hdl”:

      ​​​​​​​ 这个神经网络比pretrained_dl_segmentation_compact有更多的隐藏层。因此更适合于包括更复杂场景在内的分割任务。

      网络架构允许更改图像尺寸,但要求最小的image_width和image_height为47像素。

Deep OCR 模型

      为 Deep OCR 提供了以下预训练神经网络:

'pretrained_deep_ocr_recognition.hdl':

      该神经网络是深度OCR模型的预训练识别组件。它被设计用来识别被裁剪成单个单词的图像上的单词。这是深度OCR的识别部分,可以再训练。

      该网络期望图像是该类型的。此外,该网络是为某些图像属性设计的。可以使用realget_dl_model_param检索相应的值。默认值:

      “image_width”:120

      “image_height”:32

      “image_num_channels”:1

      “image_range_min”:-1.0

      “image_range_max”:1.0

      网络架构允许改变图像宽度‘image_width’。图像高度‘image_height’不能更改。参数‘image_width’非常重要:它的值可以减少或增加以适应单词的预期长度,例如,由于每个字符的平均宽度。更大的image_width将消耗更多的时间和内存资源。图像宽度‘image_width’可以在训练后更改。

http://www.yayakq.cn/news/43554/

相关文章:

  • 网页设计就是网站开发吗工作细胞樱花动漫
  • 教育投资网站建设方案南通企业做网站
  • 惠城营销网站制作河南省建设厅网站中州杯
  • 网站能带来什么wordpress文章页503
  • 大型网站开发费用点击最多的网站
  • wap网站制作怎么做江门做网站那家公司好
  • 可以做哪些网站有哪些内容吗电脑做系统都是英文选哪个网站
  • 郑州做网站推广地址找人做网站防止别人用
  • 宝安网站建设公司968wordpress移动新闻
  • 开封网站建设兼职手机端网站怎么做的
  • 网站建设外包协议dw网站建设框架大小设定
  • 网站建设服务案例成都有几家做网站的公司
  • 我想做个卷帘门网站怎么做想学做网站从哪里入手
  • 餐饮美食网站建设需求分析深圳软件开发公司排行2020
  • 量化交易网站开发做网站的人多吗
  • 泉州企业建站程序网联科技网站建设
  • 单位网站建设实施方案wordpress 社交平台
  • 包头网站建设平台广和给网站写文章怎么做的
  • 中国建设银行网站荆门网点查询系统网站建设成本预算
  • 网站建设工作室需要哪些设备设计教程
  • 西安网站制作公司怎么选在线logo生成器免费
  • 网上有卖网站链接的吗dns设置 看国外网站
  • 优秀网站网页设计外包小程序开发的价格
  • 文具网站建设合同书企业品牌网站开发制作合同
  • 杭州网站设计公司推荐婚庆公司网站建设总结
  • 网站收录排名怎么做上海十大装修公司品牌
  • 深圳网站seo建设正规的佛山网站建设
  • 怎么注册地理位置东莞市seo网络推广价格
  • 设计师需要了解的网站金坛市常州网络推广
  • 专业网站建设空间wordpress摘要两端对齐