当前位置: 首页 > news >正文

增城新塘镇 企业网站建设网站重要组成部分

增城新塘镇 企业网站建设,网站重要组成部分,nas的wordpress的端口,关于服装店网站建设的策划方案PyTorch Lightning 的 Trainer 是框架的核心类,负责自动化训练流程、分布式训练、日志记录、模型保存等复杂操作。通过配置参数即可快速实现高效训练,无需手动编写循环代码。以下是详细介绍和使用示例: Trainer 的核心功能 自动化训练循环 自…

PyTorch Lightning 的 Trainer 是框架的核心类,负责自动化训练流程、分布式训练、日志记录、模型保存等复杂操作。通过配置参数即可快速实现高效训练,无需手动编写循环代码。以下是详细介绍和使用示例:

Trainer 的核心功能

  1. 自动化训练循环
    自动处理 training_stepvalidation_steptest_step 的调用,无需手动编写 for epoch in epochs 循环。

  2. 硬件加速支持
    支持 CPU/GPU/TPU、多卡训练(DDP、DeepSpeed)、混合精度训练等。

  3. 训练控制
    控制训练轮数 (max_epochs)、批次大小 (batch_size)、梯度裁剪 (gradient_clip_val) 等。

  4. 日志与监控
    集成 TensorBoard、W&B、MLFlow 等日志工具,监控损失、准确率等指标。

  5. 回调机制
    通过回调函数(如 EarlyStoppingModelCheckpoint)实现早停、模型保存等扩展功能。

Trainer 的常用参数

from pytorch_lightning import Trainertrainer = Trainer(# 基础配置max_epochs=10,            # 最大训练轮数accelerator="auto",       # 自动选择设备 (CPU/GPU/TPU)devices="auto",           # 使用所有可用设备(如多 GPU)precision="16-mixed",     # 混合精度训练(FP16)# 日志与调试logger=True,              # 默认使用 TensorBoardlog_every_n_steps=10,     # 每 10 个批次记录一次日志fast_dev_run=False,       # 快速运行一个批次(调试模式)# 回调函数callbacks=[pl.callbacks.EarlyStopping(monitor="val_loss", patience=3),pl.callbacks.ModelCheckpoint(monitor="val_loss", save_top_k=2)],# 分布式训练strategy="ddp",           # 分布式数据并行策略(多 GPU)num_nodes=1,              # 节点数量(多机器训练)
)

使用示例代码

步骤 1:定义 LightningModule
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as plclass LitModel(pl.LightningModule):def __init__(self):super().__init__()self.layer1 = nn.Linear(28*28, 128)self.layer2 = nn.Linear(128, 10)def forward(self, x):x = x.view(x.size(0), -1)  # 展平输入x = F.relu(self.layer1(x))x = self.layer2(x)return xdef training_step(self, batch, batch_idx):x, y = batchy_hat = self(x)loss = F.cross_entropy(y_hat, y)self.log("train_loss", loss)  # 自动记录日志return lossdef validation_step(self, batch, batch_idx):x, y = batchy_hat = self(x)loss = F.cross_entropy(y_hat, y)self.log("val_loss", loss)     # 自动记录验证损失def configure_optimizers(self):return torch.optim.Adam(self.parameters(), lr=0.001)
步骤 2:定义 DataModule
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensorclass MNISTDataModule(pl.LightningDataModule):def __init__(self, batch_size=32):super().__init__()self.batch_size = batch_sizedef prepare_data(self):MNIST(root="data", download=True)def setup(self, stage=None):full_dataset = MNIST(root="data", train=True, transform=ToTensor())self.train_data, self.val_data = random_split(full_dataset, [55000, 5000])def train_dataloader(self):return DataLoader(self.train_data, batch_size=self.batch_size, shuffle=True)def val_dataloader(self):return DataLoader(self.val_data, batch_size=self.batch_size)dm = MNISTDataModule(batch_size=32)

步骤 3:启动训练

model = LitModel()
trainer = Trainer(max_epochs=10,accelerator="auto",devices="auto",logger=True,callbacks=[pl.callbacks.ModelCheckpoint(monitor="val_loss")]
)# 开始训练与验证
trainer.fit(model, datamodule=dm)# 测试(可选)
trainer.test(model, datamodule=dm)

关键功能演示

1. 多 GPU 训练
# 使用 4 个 GPU 训练
trainer = Trainer(devices=4, strategy="ddp")
2. 混合精度训练

# 使用 FP16 混合精度
trainer = Trainer(precision="16-mixed")
3. 早停与模型保存
callbacks = [pl.callbacks.EarlyStopping(monitor="val_loss", patience=3),pl.callbacks.ModelCheckpoint(dirpath="checkpoints/",filename="best-model-{epoch:02d}-{val_loss:.2f}",save_top_k=2,monitor="val_loss")
]
trainer = Trainer(callbacks=callbacks)
4. 调试模式
# 快速验证代码正确性(仅运行一个批次)
trainer = Trainer(fast_dev_run=True)

常见问题

如何恢复训练?
使用 resume_from_checkpoint 参数:

trainer = Trainer(resume_from_checkpoint="path/to/checkpoint.ckpt")

如何限制训练时间?

trainer = Trainer(max_time="00:02:00")  # 最多训练 2 分钟

如何自定义学习率调度器?
在 自定义的 LightningDataModule继承类的 configure_optimizers 方法中返回优化器和调度器:

def configure_optimizers(self):optimizer = Adam(self.parameters())scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)return [optimizer], [scheduler]

总结

通过 Trainer,PyTorch Lightning 将训练流程的复杂性封装在几行配置中,开发者只需关注模型逻辑和数据加载。其灵活的参数和回调机制能够覆盖从实验到生产的全流程需求。

参考:

https://lightning.ai/docs/pytorch/stable/common/trainer.html

http://www.yayakq.cn/news/805821/

相关文章:

  • 秦皇岛市做公司网站的怎样编辑网页
  • 泉州惠安网站建设网站变成了百度推广
  • 网站开发 自动生成缩略图wordpress图片合成
  • 奉贤长沙网站建设wordpress建站教程
  • 做网站CentOS还是win好网站建设推广培训
  • 可以在线编程的网站深圳宣传片制作
  • 网站建设属于广告费么佛山seo扣费
  • 让百度收录整个网站wordpress the7 下载
  • 淘宝联盟必须要网站备案wordpress 前端投稿插件
  • 做网站 创业wordpress购买
  • 国内炫酷的网站设计wordpress 修改widget
  • 夸克建站系统官网网龙网络有限公司
  • 住房城乡建设部网站文件查询网站开发三大框架
  • 网站开发主要工作内容川沙网站建设
  • 小规模开普票网站建设几个点网站 加域名
  • 摄影照片投稿网站wordpress网站显示不全
  • 公司做网站域名归谁wordpress 自用主题
  • php网站开发结构说明河南郑州网站推广优化外包
  • 计算机网站开发方向网站开发公司的推广费用
  • 网站开发常用语言总结cfensi.wordpress
  • ftp免费注册网站61制作工厂网站
  • 医院网站详细设计重庆市建设工程施工安全管理网站
  • 技术先进的网站建专业做网站的人
  • 国家林业工程建设协会网站破解wordpress的密码
  • 如何做个购物网站网站建设彩铃
  • 网站建设培训机构网页视频怎么下载保存
  • 建设领域现场专业人员报名网站黄石网站制作公司
  • cnzz网站排名是怎么做的怎么做网站推广六安
  • 国外 定制网站网站开发的结构图
  • 苏州门户网站建设微建站程序有哪些