当前位置: 首页 > news >正文

seo自学网站沈阳招标信息网

seo自学网站,沈阳招标信息网,wordpress VIP系统,宁波网页设计美工多少一个月前置知识: 直接积分法有理函数的不定积分 简单的无理函数的不定积分 对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。 注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得…

前置知识:

  • 直接积分法
  • 有理函数的不定积分

简单的无理函数的不定积分

对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。

注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得到的有理式。

形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx R(x,cx+dax+b )dx的积分

求形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx R(x,cx+dax+b )dx的积分,其中 a d ≠ b c ad\neq bc ad=bc

t n = a x + b c x + d t^n=\dfrac{ax+b}{cx+d} tn=cx+dax+b,则 x = d t n − b a − c t n x=\dfrac{dt^n-b}{a-ct^n} x=actndtnb d x = a d − b c ( a − c t n ) 2 n t n − 1 d t dx=\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt dx=(actn)2adbcntn1dt,从而把原积分变换为有理函数的积分。

∫ R ( x , a x + b c x + d ) d x = ∫ R ( d t n − b a − c t n , t ) ⋅ a d − b c ( a − c t n ) 2 n t n − 1 d t \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx=\int R(\dfrac{dt^n-b}{a-ct^n},t)\cdot\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt R(x,cx+dax+b )dx=R(actndtnb,t)(actn)2adbcntn1dt

例题

计算 ∫ 1 ( x − 1 ) ( x + 1 ) 2 3 d x \int \dfrac{1}{\sqrt[3]{(x-1)(x+1)^2}}dx 3(x1)(x+1)2 1dx

解:
\qquad t = x + 1 x − 1 3 t=\sqrt[3]{\dfrac{x+1}{x-1}} t=3x1x+1 ,则 x = t 3 + 1 t 3 − 1 x=\dfrac{t^3+1}{t^3-1} x=t31t3+1 d x = − 6 t 2 ( t 3 − 1 ) 2 d t dx=-\dfrac{6t^2}{(t^3-1)^2}dt dx=(t31)26t2dt,于是

\qquad 原式 = ∫ x + 1 x − 1 3 ⋅ 1 x + 1 d x = − ∫ t ⋅ ( 1 2 ⋅ t 3 − 1 t 3 ) ⋅ 6 t 2 ( t 3 − 1 ) 2 d t =\int \sqrt[3]{\dfrac{x+1}{x-1}}\cdot\dfrac{1}{x+1}dx=-\int t\cdot(\dfrac 12\cdot\dfrac{t^3-1}{t^3})\cdot \dfrac{6t^2}{(t^3-1)^2}dt =3x1x+1 x+11dx=t(21t3t31)(t31)26t2dt

= − ∫ 3 t 3 − 1 d t = ∫ ( − 1 t − 1 + t + 2 t 2 + t + 1 ) d t \qquad\qquad =-\int \dfrac{3}{t^3-1}dt=\int(-\dfrac{1}{t-1}+\dfrac{t+2}{t^2+t+1})dt =t313dt=(t11+t2+t+1t+2)dt

= − ln ⁡ ∣ t − 1 ∣ + 1 2 ∣ t 2 + t + 1 ∣ + 3 arctan ⁡ ( 2 t + 1 3 ) + C \qquad\qquad =-\ln|t-1|+\dfrac 12|t^2+t+1|+\sqrt 3\arctan(\dfrac{2t+1}{\sqrt 3})+C =lnt1∣+21t2+t+1∣+3 arctan(3 2t+1)+C

= 1 2 ln ⁡ t 3 − 1 ( t − 1 ) 3 + 3 arctan ⁡ ( 2 t + 1 3 ) + C \qquad\qquad =\dfrac 12\ln\dfrac{t^3-1}{(t-1)^3}+\sqrt3\arctan(\dfrac{2t+1}{\sqrt 3})+C =21ln(t1)3t31+3 arctan(3 2t+1)+C

= 1 2 ln ⁡ ∣ 2 x − 1 ( x + 1 x − 1 − 1 ) 3 ∣ + 3 arctan ⁡ [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =\dfrac 12\ln|\dfrac{\frac{2}{x-1}}{(\sqrt{\frac{x+1}{x-1}}-1)^3}|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln(x1x+1 1)3x12+3 arctan[3 23x1x+1 +3 1]+C

= − 1 2 ln ⁡ ∣ x − 1 2 ∣ − 3 2 ln ⁡ ∣ x + 1 x − 1 3 − 1 ∣ + 3 arctan ⁡ [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =-\dfrac12\ln|\dfrac{x-1}{2}|-\dfrac 32\ln|\sqrt[3]{\dfrac{x+1}{x-1}}-1|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln2x123ln3x1x+1 1∣+3 arctan[3 23x1x+1 +3 1]+C


形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c )的积分

求形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c )的积分,其中 a ≠ 0 a\neq 0 a=0

这个无理式可以化为以下三种形式:

  • ∫ R ( x , ( x + p ) 2 + q 2 ) d x \int R(x,\sqrt{(x+p)^2+q^2})dx R(x,(x+p)2+q2 )dx
  • ∫ R ( x , ( x + p ) 2 − q 2 ) d x \int R(x,\sqrt{(x+p)^2-q^2})dx R(x,(x+p)2q2 )dx
  • ∫ R ( x , q 2 − ( x + p ) 2 ) d x \int R(x,\sqrt{q^2-(x+p)^2})dx R(x,q2(x+p)2 )dx

对这三种情况,可以由以下变换将它们化为三角有理式的积分:

  • x + p = q tan ⁡ t x+p=q\tan t x+p=qtant
  • x + p = q sec ⁡ t x+p=q\sec t x+p=qsect
  • x + p = q sin ⁡ t x+p=q\sin t x+p=qsint

例题

计算 ∫ x 2 − 2 x + 2 x − 1 d x \int \dfrac{\sqrt{x^2-2x+2}}{x-1}dx x1x22x+2 dx

解:
\qquad x − 1 = tan ⁡ t x-1=\tan t x1=tant,则 x 2 − 2 x + 2 = tan ⁡ 2 t + 1 = 1 cos ⁡ t \sqrt{x^2-2x+2}=\sqrt{\tan^2 t+1}=\dfrac{1}{\cos t} x22x+2 =tan2t+1 =cost1 1 cos ⁡ 2 t d t \dfrac{1}{\cos^2 t}dt cos2t1dt,于是

\qquad 原式 = 1 sin ⁡ t ⋅ 1 cos ⁡ 2 t d t = ∫ 1 ( cos ⁡ 2 t − 1 ) cos ⁡ 2 t ⋅ ( − sin ⁡ t ) d t =\dfrac{1}{\sin t}\cdot\dfrac{1}{\cos^2t}dt=\int\dfrac{1}{(\cos^2t-1)\cos^2 t}\cdot(-\sin t)dt =sint1cos2t1dt=(cos2t1)cos2t1(sint)dt

= ∫ ( 1 cos ⁡ 2 t − 1 − 1 cos ⁡ 2 t ) d ( cos ⁡ t ) = 1 2 ln ⁡ ∣ cos ⁡ t − 1 cos ⁡ t + 1 ∣ + 1 cos ⁡ t + C \qquad\qquad =\int(\dfrac{1}{\cos^2 t-1}-\dfrac{1}{\cos^2 t})d(\cos t)=\dfrac 12\ln|\dfrac{\cos t-1}{\cos t+1}|+\dfrac{1}{\cos t}+C =(cos2t11cos2t1)d(cost)=21lncost+1cost1+cost1+C

= 1 2 ln ⁡ ∣ ( cos ⁡ t − 1 ) 2 cos ⁡ t 2 − 1 ∣ + x 2 − 2 x + 2 + C = 1 2 ln ⁡ ( 1 − cos ⁡ t sin ⁡ t ) 2 + x 2 − 2 x + 2 + C \qquad\qquad =\dfrac 12\ln|\dfrac{(\cos t-1)^2}{\cos t^2-1}|+\sqrt{x^2-2x+2}+C=\dfrac 12\ln(\dfrac{1-\cos t}{\sin t})^2+\sqrt{x^2-2x+2}+C =21lncost21(cost1)2+x22x+2 +C=21ln(sint1cost)2+x22x+2 +C

= ln ⁡ ∣ 1 cos ⁡ t − 1 tan ⁡ x ∣ + x 2 − 2 x + 2 + C = ln ⁡ ∣ x 2 − 2 x + 2 − 1 x − 1 ∣ + x 2 − 2 x + 2 + C \qquad\qquad =\ln|\dfrac{\frac{1}{\cos t}-1}{\tan x}|+\sqrt{x^2-2x+2}+C=\ln|\dfrac{\sqrt{x^2-2x+2}-1}{x-1}|+\sqrt{x^2-2x+2}+C =lntanxcost11+x22x+2 +C=lnx1x22x+2 1+x22x+2 +C


总结

对于这些简单的无理函数的不定积分,要善于换元,将无理函数的不定积分转化为有理函数的不定积分,然后运用之前的知识来求解即可。

http://www.yayakq.cn/news/570659/

相关文章:

  • php网站建设学习富海人才招聘网官网
  • 阿里云备案网站名称建站公司分析
  • 网站升级维护要多久苏州公司网页制作
  • 好用的网站wordpress 目录样式
  • 网站空间提供商专业做pc 手机网站
  • 有没有做门店设计的网站深圳有哪些网站是做餐饮沙龙的
  • 阿克苏网站设计成品app直播源码下载
  • 外面网站怎么做的做自媒体的网站有哪些
  • 学校网站建设培训心得体会.net网站程序
  • 购物网站建设的意义与目的湘西州住房和城乡建设局网站
  • 国外的网站需要备案吗襄阳网站建设制作费用
  • 上海微网站建设做炫舞情侣头像动态图网站
  • 为什么做的网站预览出来什么都没有网页游戏开服表时间
  • 奥林匹克做校服的网站网站站长在哪登陆后台
  • 如何上传自己的视频做网站wordpress响应式博客主题
  • 做车贷的网站百度推广价格表
  • 平台搭建不太原seo软件
  • 建设校园网站的背景及意义企业登记信息查询
  • 做经营性的网站备案条件管理系统网站模板下载
  • 温州产品推广网站ps怎么制作网页页面
  • wordpress不小心改了网站地址新装本地wordpress超慢
  • 好的品牌设计网站微博官网入口
  • 找个免费网站这么难吗wordpress首页左图右文
  • 企业模式网站列表管理器网络营销seo招聘
  • 学了dw 就可以做网站了吗论坛网站推广
  • 买汽车最好的网站建设网站开发人员是什么
  • 广州建站服务写作网站起点
  • 免费网站建设合同范本网站上线推广
  • 网站开发实现电脑版和手机版的切换顺义区做网站的公司
  • 做商城网站的公司网站建设鼎网络