当前位置: 首页 > news >正文

济南好的网站建设公司哪家好大型自助建站平台

济南好的网站建设公司哪家好,大型自助建站平台,番禺建设银行网站首页,wordpress的google字体比较(一)利用python绘制条形图 条形图(Barplot)简介 条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。 快速绘制 基于seaborn import seaborn as sns import matplo…

比较(一)利用python绘制条形图

条形图(Barplot)简介

1

条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。

快速绘制

  1. 基于seaborn

    import seaborn as sns
    import matplotlib.pyplot as plt# 导入数据
    tips = sns.load_dataset("tips")# 利用barplot函数快速绘制
    sns.barplot(x="total_bill", y="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2')plt.show()
    

    2

  2. 基于matplotlib

    import matplotlib.pyplot as plt# 导入数据
    tips = sns.load_dataset("tips")
    grouped_tips = tips.groupby('day')['total_bill'].sum().reset_index()# 利用bar函数快速绘制
    plt.bar(grouped_tips.day, grouped_tips.total_bill)plt.show()
    

    3

  3. 基于pandas

    import matplotlib.pyplot as plt
    import pandas as pd# 导入数据
    tips = sns.load_dataset("tips")
    grouped_tips = tips.groupby('day')['total_bill'].sum().reset_index()# 利用plot.bar函数快速绘制
    grouped_tips.plot.bar(x='day', y='total_bill', rot=0)plt.show()
    

    4

定制多样化的条形图

自定义条形图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

通过seaborn绘制多样化的条形图

seaborn主要利用barplot绘制条形图,可以通过seaborn.barplot了解更多用法

  1. 修改参数

    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as npsns.set(font='SimHei', font_scale=0.8, style="darkgrid") # 解决Seaborn中文显示问题# 导入数据
    tips = sns.load_dataset("tips")# 构造子图
    fig, ax = plt.subplots(2,2,constrained_layout=True, figsize=(8, 8))# 修改方向-垂直
    ax_sub = sns.barplot(y="total_bill", x="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2',ax=ax[0][0])
    ax_sub.set_title('垂直条形图')# 自定义排序
    ax_sub = sns.barplot(y="total_bill", x="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2',order=["Fri","Thur","Sat","Sun"],ax=ax[0][1])
    ax_sub.set_title('自定义排序')# 数值排序
    df = tips.groupby('day')['total_bill'].sum().sort_values(ascending=False).reset_index()
    ax_sub = sns.barplot(y="day", x="total_bill", data=df, errorbar=None, color='#69b3a2',order=df['day'],ax=ax[1][0])
    ax_sub.set_title('数值排序')# 添加误差线
    ax_sub = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, errorbar=('ci', 85), capsize=.2, color='lightblue',ax=ax[1][1])
    ax_sub.set_title('添加误差线')plt.show()
    

    5

  2. 分组条形图

    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as npsns.set(style="darkgrid")# 导入数据
    tips = sns.load_dataset("tips")fig, ax = plt.subplots(figsize=(4, 4))# 分组条形图
    colors = ["#69b3a2", "#4374B3"]
    sns.barplot(x="day", y="total_bill", hue="smoker", data=tips, errorbar=None, palette=colors)plt.show()# 分组/子分组条形图
    sns.catplot(x="sex", y="total_bill", hue="smoker", col="day", data=tips, kind="bar", height=4, aspect=.7)plt.show()
    

    6

  3. 引申-数量堆积条形图

    import seaborn as sns
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.patches as mpatchessns.set(style="darkgrid")# 导入数据
    tips = sns.load_dataset("tips")
    df = tips.groupby(['day', 'smoker'])['total_bill'].sum().reset_index()
    smoker_df = df[df['smoker']=='Yes']
    non_smoker_df = df[df['smoker']=='No']# 布局
    plt.figure(figsize=(6, 4))# 非吸烟者的条形图
    bar1 = sns.barplot(x='day', y='total_bill', data=non_smoker_df, color='lightblue')
    # 吸烟者的条形图,底部开始位置设置为非吸烟者的total_bill值(即吸烟者条形图在上面)
    bar2 = sns.barplot(x='day', y='total_bill', bottom=non_smoker_df['total_bill'], data=smoker_df, color='darkblue')# 图例
    top_bar = mpatches.Patch(color='darkblue', label='smoker = Yes')
    bottom_bar = mpatches.Patch(color='lightblue', label='smoker = No')
    plt.legend(handles=[top_bar, bottom_bar])plt.show()
    

    7

  4. 引申-百分比堆积条形图

    import seaborn as sns
    import matplotlib.pyplot as plt
    import pandas as pd# 导入数据
    tips = sns.load_dataset("tips")# 计算百分比
    day_total_bill = tips.groupby('day')['total_bill'].sum() # 每日数据
    group_total_bill = tips.groupby(['day', 'smoker'])['total_bill'].sum().reset_index() # 每日每组数据
    group_total_bill['percent'] = group_total_bill.apply(lambda row: row['total_bill'] / day_total_bill[row['day']] * 100, axis=1)# 将数据分成smoker和non-smoker两份,方便我们绘制两个条形图
    smoker_df = group_total_bill[group_total_bill['smoker'] == 'Yes']
    non_smoker_df = group_total_bill[group_total_bill['smoker'] == 'No']# 布局
    plt.figure(figsize=(6, 4))# 非吸烟者的条形图
    bar1 = sns.barplot(x='day', y='percent', data=non_smoker_df, color='lightblue')
    # 吸烟者的条形图,底部开始位置设置为非吸烟者的total_bill值(即吸烟者条形图在上面)
    bar2 = sns.barplot(x='day', y='percent', bottom=non_smoker_df['percent'], data=smoker_df, color='darkblue')# 图例
    top_bar = mpatches.Patch(color='darkblue', label='smoker = Yes')
    bottom_bar = mpatches.Patch(color='lightblue', label='smoker = No')
    plt.legend(handles=[top_bar, bottom_bar])plt.show()
    

    8

通过seaborn绘制多样化的条形图

seaborn主要利用barh绘制条形图,可以通过matplotlib.pyplot.barh了解更多用法

  1. 修改参数

    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import numpy as np 
    import pandas as pdmpl.rcParams.update(mpl.rcParamsDefault) # 恢复默认的matplotlib样式
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签# 自定义数据
    height = [3, 12, 5, 18, 45]
    bars = ('A', 'B', 'C', 'D', 'E')
    y_pos = np.arange(len(bars))
    x_pos = np.arange(len(bars))# 初始化布局
    fig = plt.figure(figsize=(8,8))# 水平方向-水平条形图
    plt.subplot(3, 3, 1) 
    plt.barh(y_pos, height)
    plt.yticks(y_pos, bars)
    plt.title('水平条形图')# 指定顺序
    height_order, bars_order = zip(*sorted(zip(height, bars), reverse=False)) # 自定义顺序plt.subplot(3, 3, 2) 
    plt.barh(y_pos, height_order)
    plt.yticks(y_pos, bars_order)
    plt.title('指定顺序')# 自定义颜色
    plt.subplot(3, 3, 3) 
    plt.bar(x_pos, height, color=['black', 'red', 'green', 'blue', 'cyan'])
    plt.xticks(x_pos, bars)
    plt.title('自定义颜色')# 自定义颜色-边框颜色
    plt.subplot(3, 3, 4) 
    plt.bar(x_pos, height, color=(0.1, 0.1, 0.1, 0.1),  edgecolor='blue')
    plt.xticks(x_pos, bars)
    plt.title('自定义边框颜色')# 控制距离
    width = [0.1,0.2,3,1.5,0.3]
    x_pos_width = [0,0.3,2,4.5,5.5]plt.subplot(3, 3, 5) 
    plt.bar(x_pos_width, height, width=width)
    plt.xticks(x_pos_width, bars)
    plt.title('控制距离')# 控制宽度
    x_pos_space = [0,1,5,8,9]plt.subplot(3, 3, 6) 
    plt.bar(x_pos_space, height)
    plt.xticks(x_pos_space, bars)
    plt.title('控制宽度')# 自定义布局
    plt.subplot(3, 3, 7) 
    plt.bar(x_pos, height)
    plt.xticks(x_pos, bars, color='orange', rotation=90) # 自定义x刻度名称颜色,自定义旋转
    plt.xlabel('category', fontweight='bold', color = 'orange', fontsize='18') # 自定义x标签
    plt.yticks(color='orange') # 自定义y刻度名称颜色plt.title('自定义布局')# 添加误差线
    err = [val * 0.1 for val in height] # 计算误差(这里假设误差为height的10%)plt.subplot(3, 3, 8) 
    plt.bar(x_pos, height, yerr=err, alpha=0.5, ecolor='black', capsize=10)
    plt.xticks(x_pos, bars)
    plt.title('添加误差线')# 增加数值文本信息
    plt.subplot(3, 3, 9) 
    ax = plt.bar(x_pos, height)
    for bar in ax:yval = bar.get_height()plt.text(bar.get_x() + bar.get_width()/2.0, yval, int(yval), va='bottom') # va参数代表垂直对齐方式
    plt.xticks(x_pos, bars)
    plt.title('增加数值文本信息')fig.tight_layout() # 自动调整间距
    plt.show()
    

    9

  2. 分组条形图

    import numpy as np
    import matplotlib.pyplot as plt# 宽度设置
    barWidth = 0.25# 自定义数据
    bars1 = [12, 30, 1, 8, 22]
    bars2 = [28, 6, 16, 5, 10]
    bars3 = [29, 3, 24, 25, 17]# x位置
    r1 = np.arange(len(bars1))
    r2 = [x + barWidth for x in r1]
    r3 = [x + barWidth for x in r2]# 绘制分组条形图
    plt.bar(r1, bars1, color='#7f6d5f', width=barWidth, edgecolor='white', label='g1')
    plt.bar(r2, bars2, color='#557f2d', width=barWidth, edgecolor='white', label='g2')
    plt.bar(r3, bars3, color='#2d7f5e', width=barWidth, edgecolor='white', label='g3')# 轴标签、图例
    plt.xlabel('group', fontweight='bold')
    plt.xticks([r + barWidth for r in range(len(bars1))], ['A', 'B', 'C', 'D', 'E'])
    plt.legend()plt.show()
    

    10

  3. 数量堆积条形图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd# 自定义数据
    bars1 = [12, 28, 1, 8, 22]
    bars2 = [28, 7, 16, 4, 10]
    bars3 = [25, 3, 23, 25, 17]# bars1 + bars2的高度
    bars = np.add(bars1, bars2).tolist()# x位置
    r = [0,1,2,3,4]# bar名称、宽度
    names = ['A','B','C','D','E']
    barWidth = 1# 底部bar
    plt.bar(r, bars1, color='#7f6d5f', edgecolor='white', width=barWidth, label="g1")
    # 中间bar
    plt.bar(r, bars2, bottom=bars1, color='#557f2d', edgecolor='white', width=barWidth, label="g2")
    # 顶部bar
    plt.bar(r, bars3, bottom=bars, color='#2d7f5e', edgecolor='white', width=barWidth, label="g3")# x轴设置、图例
    plt.xticks(r, names, fontweight='bold')
    plt.xlabel("group")
    plt.legend()plt.show()
    

    11

  4. 百分比堆积条形图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd# 自定义数据
    r = [0,1,2,3,4] # x位置
    raw_data = {'greenBars': [20, 1.5, 7, 10, 5], 'orangeBars': [5, 15, 5, 10, 15],'blueBars': [2, 15, 18, 5, 10]}
    df = pd.DataFrame(raw_data)# 转为百分比
    totals = [i+j+k for i,j,k in zip(df['greenBars'], df['orangeBars'], df['blueBars'])]
    greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)]
    orangeBars = [i / j * 100 for i,j in zip(df['orangeBars'], totals)]
    blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)]# bar名称、宽度
    barWidth = 0.85
    names = ('A','B','C','D','E')# 底部bar
    plt.bar(r, greenBars, color='#b5ffb9', edgecolor='white', width=barWidth, label="g1")
    # 中间bar
    plt.bar(r, orangeBars, bottom=greenBars, color='#f9bc86', edgecolor='white', width=barWidth, label="g2")
    # 顶部bar
    plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color='#a3acff', edgecolor='white', width=barWidth, label="g3")# x轴、图例
    plt.xticks(r, names)
    plt.xlabel("group")
    plt.legend()plt.show()
    

    12

通过pandas绘制多样化的条形图

pandas主要利用barh绘制条形图,可以通过pandas.DataFrame.plot.barh了解更多用法

  1. 修改参数

    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import numpy as np 
    import pandas as pdplt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签# 自定义数据
    category = ['Group1']*30 + ['Group2']*50 + ['Group3']*20
    df = pd.DataFrame({'category': category})
    values = df['category'].value_counts()# 初始化布局
    fig = plt.figure(figsize=(8,4))# 水平方向-水平条形图
    plt.subplot(1, 2, 1) 
    values.plot.barh(grid=True)
    plt.title('水平条形图')# 自定义顺序、颜色
    # 指定顺序
    desired_order = ['Group1', 'Group2', 'Group3']
    values_order = values.reindex(desired_order)
    # 指定颜色
    colors = ['#69b3a2', '#cb1dd1', 'palegreen']plt.subplot(1, 2, 2) 
    values.plot.bar(color=colors,grid=True, )  
    plt.title('自定义顺序、颜色')fig.tight_layout() # 自动调整间距
    plt.show()
    

    13

  2. 分组条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')# 分组条形图
    pivot_df.plot.bar(grid=True)plt.show()
    

    14

  3. 数量堆积条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')# 堆积条形图
    pivot_df.plot.bar(stacked=True,grid=True)plt.show()
    

    15

  4. 百分比堆积条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')
    pivot_df_percentage = pivot_df.div(pivot_df.sum(axis=1), axis=0) * 100# 百分比堆积条形图
    pivot_df_percentage.plot.bar(stacked=True,grid=True)# 图例
    plt.legend(bbox_to_anchor=(1.04, 1),loc='upper left')
    plt.show()
    

    16

总结

以上通过seaborn的barplot、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景。

共勉~

http://www.yayakq.cn/news/716873/

相关文章:

  • dede网站安全设置防挂马教程十堰网站制作
  • 石家庄网站建设刘华阿里云做网站需要环境
  • 网站域名解绑南宁百度 - 网站正在建设中
  • 2021年最新的网站全国企业公示信息公示网官网
  • 无锡市新区建设环保局网站北京网页设计制作
  • 离石做网站微商城平台有哪些
  • 重庆广告公司网站建设网站备案什么鬼
  • 做网站 设计师很长岛网站建设
  • 多语种外贸网站管理系统国外 定制网站
  • 中信建设有限责任公司盐城高铁城seo网络培训
  • html购物网站模板做网站一屏的尺寸是
  • 东莞设计公司网站做农产品的网站
  • 建设网站工作内容做美妆网站的关键词
  • 四川建设网站首页51源码网
  • 济南专业做网站wordpress tags地址
  • 烟台做网站招投标网站开发费用
  • 杭州市建设工程造价管理协会网站wordpress站点费用
  • eclipse开发网站开发徐州网络公司排名
  • 企业做网站需要什么免费的站内推广方式有哪些
  • 郑州做网站九零后产品介绍网站html
  • 计算机网站建设策划书wordpress 多站点错误
  • 海南网站运营托管咨询什么电商平台免费开店
  • 外贸soho 网站建设深圳保障性住房房价一般是多少
  • 改行做网站wordpress 商务主题
  • 创业 做网站河南建造师网官网
  • 网站负责人不是法人装修设计师之家官网
  • 手机管理网站模板下载安装网站制作咨询
  • 如何建设网站兴田德润实惠建材公司网站建设案例
  • 女性门户资讯类网站织梦dedecms模板用wordpress做的博客
  • 崇明网站开发房屋产权地址备案在那个网站做