当前位置: 首页 > news >正文

一米设计公司关键词排名优化品牌

一米设计公司,关键词排名优化品牌,网站多域名,php做网站代码人工智能例子汇总:AI常见的算法和例子-CSDN博客 LSTM 通过 记忆单元(cell) 和 三个门控机制(遗忘门、输入门、输出门)来控制信息流: 记忆单元(Cell State) 负责存储长期信息&…

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

LSTM 通过 记忆单元(cell)三个门控机制(遗忘门、输入门、输出门)来控制信息流:

 记忆单元(Cell State)

  • 负责存储长期信息,并通过门控机制决定保留或丢弃信息。

 遗忘门(Forget Gate, ftf_tft​)

 输入门(Input Gate, iti_tit​)

 输出门(Output Gate, oto_tot​)

特性

传统 RNNLSTM
记忆能力短期记忆长短期记忆
计算复杂度
解决梯度消失
适用场景短序列数据长序列数据

LSTM 应用场景

  • 自然语言处理(NLP):文本生成、情感分析、机器翻译
  • 时间序列预测:股票预测、天气预报、传感器数据分析
  • 语音识别:自动字幕生成、语音转文字(ASR)
  • 机器人与控制系统:智能体决策、自动驾驶

例子:

下面例子实现了一个 基于 LSTM 的强化学习智能体,在 1D 网格环境 里移动,并找到最优路径。
最终,我们 绘制 5 条测试路径,并高亮显示最佳路径(红色)

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt# ========== 1. 定义 LSTM 策略网络 ==========
class LSTMPolicy(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(LSTMPolicy, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)self.softmax = nn.Softmax(dim=-1)def forward(self, x, hidden_state):batch_size = x.size(0)# 确保 hidden_state 维度正确if hidden_state[0].dim() == 2:hidden_state = (hidden_state[0].unsqueeze(1).repeat(1, batch_size, 1),hidden_state[1].unsqueeze(1).repeat(1, batch_size, 1))out, hidden_state = self.lstm(x, hidden_state)out = self.fc(out[:, -1, :])  # 取最后时间步的输出action_prob = self.softmax(out)  # 归一化输出,作为策略return action_prob, hidden_statedef init_hidden(self, batch_size=1):return (torch.zeros(self.num_layers, batch_size, self.hidden_size),torch.zeros(self.num_layers, batch_size, self.hidden_size))# ========== 2. 创建网格环境 ==========
class GridWorld:def __init__(self, grid_size=10, goal_position=9):self.grid_size = grid_sizeself.goal_position = goal_positionself.reset()def reset(self):self.position = 0return self.positiondef step(self, action):if action == 0:self.position = max(0, self.position - 1)elif action == 1:self.position = min(self.grid_size - 1, self.position + 1)reward = 1 if self.position == self.goal_position else -0.1done = self.position == self.goal_positionreturn self.position, reward, done# ========== 3. 训练智能体 ==========
def train(num_episodes=500, max_steps=50):env = GridWorld()input_size = 1hidden_size = 64output_size = 2num_layers = 1policy = LSTMPolicy(input_size, hidden_size, output_size, num_layers)optimizer = optim.Adam(policy.parameters(), lr=0.01)gamma = 0.99for episode in range(num_episodes):state = torch.tensor([[env.reset()]], dtype=torch.float32).unsqueeze(0)  # (1, 1, input_size)hidden_state = policy.init_hidden(batch_size=1)log_probs = []rewards = []for step in range(max_steps):action_probs, hidden_state = policy(state, hidden_state)action = torch.multinomial(action_probs, 1).item()log_prob = torch.log(action_probs.squeeze(0)[action])log_probs.append(log_prob)next_state, reward, done = env.step(action)rewards.append(reward)if done:breakstate = torch.tensor([[next_state]], dtype=torch.float32).unsqueeze(0)# 计算回报并更新策略returns = []R = 0for r in reversed(rewards):R = r + gamma * Rreturns.insert(0, R)returns = torch.tensor(returns, dtype=torch.float32)returns = (returns - returns.mean()) / (returns.std() + 1e-9)loss = sum([-log_prob * R for log_prob, R in zip(log_probs, returns)])optimizer.zero_grad()loss.backward()optimizer.step()if (episode + 1) % 50 == 0:print(f"Episode {episode + 1}/{num_episodes}, Total Reward: {sum(rewards)}")torch.save(policy.state_dict(), "policy.pth")# 训练智能体
train(500)# ========== 4. 测试智能体并绘制最佳路径 ==========
def test(num_episodes=5):env = GridWorld()input_size = 1hidden_size = 64output_size = 2num_layers = 1policy = LSTMPolicy(input_size, hidden_size, output_size, num_layers)policy.load_state_dict(torch.load("policy.pth"))plt.figure(figsize=(10, 5))best_path = Nonebest_steps = float('inf')for episode in range(num_episodes):state = torch.tensor([[env.reset()]], dtype=torch.float32).unsqueeze(0)  # (1, 1, input_size)hidden_state = policy.init_hidden(batch_size=1)positions = [env.position]  # 记录位置变化while True:action_probs, hidden_state = policy(state, hidden_state)action = torch.argmax(action_probs, dim=-1).item()next_state, reward, done = env.step(action)positions.append(next_state)if done:breakstate = torch.tensor([[next_state]], dtype=torch.float32).unsqueeze(0)# 记录最佳路径(最短步数)if len(positions) < best_steps:best_steps = len(positions)best_path = positions# 绘制普通路径(蓝色)plt.plot(range(len(positions)), positions, marker='o', linestyle='-', color='blue', alpha=0.6,label=f'Episode {episode + 1}' if episode == 0 else "")# 绘制最佳路径(红色)if best_path:plt.plot(range(len(best_path)), best_path, marker='o', linestyle='-', color='red', linewidth=2,label="Best Path")# 打印最佳路径print(f"Best Path (steps={best_steps}): {best_path}")plt.xlabel("Time Steps")plt.ylabel("Agent Position")plt.title("Agent's Movement Path (Best Path in Red)")plt.legend()plt.grid(True)plt.show()# 测试并绘制智能体移动路径
test(5)

http://www.yayakq.cn/news/792857/

相关文章:

  • 小程序企业网站开发网站如何做自适应
  • 成都定制网站建设服企业云平台
  • 做的网站被注销东莞网站建设怎么样
  • 怎么在网站上建设投票统计网店美工心得体会
  • 个人备案的网站做企业内容网站设计实验目的
  • 中国商标官方网站哈尔滨 建网站
  • 郑州联通网站备案南京网站定制公司
  • 电子商务企业网站制作品牌怎么注册
  • 做装修广告网站好网站开发风险协议
  • 中小型企业网站开发哪家室内设计好
  • 做seo网站不用域名饰品网站建设策划书
  • 有哪些网站可以做印度市场调研青岛专业网站设计的公司
  • 做网站价格需要多少钱建筑工程网络图中查找线路
  • 深圳深圳龙岗网站建设公司wordpress怎么绑定paypal
  • 企业官方网站建设运营方案百度网站做不做
  • 网站备案归哪里管wordpress怎么防止攻击
  • 外贸公司网站搭建成立公司需要什么条件
  • 杭州模板网站建站华蓥网站建设
  • 建设企业网站企业网上银行做特色菜的网站
  • 上海网站建设友汇网站页面设计培训排名
  • 网站服务器在哪租网站文件怎么做
  • 虚拟服务器建网站模仿网站属于侵权吗
  • 资讯门户类网站模板中国外包公司
  • 昆明网站建设方案策划科郑州网站建设
  • 网站建设 唐山做个网站怎么做
  • 香洲区建设局网站怎么查一个地区的所有网站域名
  • 网架厂家长沙seo就选智优营家
  • 餐饮企业网站模板大理网站设计
  • 做网站建设公司网站设计更新wordpress 504
  • 招投标网站建设邮政招c1驾驶员8000元