当前位置: 首页 > news >正文

门户网站 需求wordpress版本升级5.2

门户网站 需求,wordpress版本升级5.2,平顶山河南网站建设,深圳宝安专业做网站公司目录 1.算法原理介绍2.算法步骤2.1 数据标准化2.2 计算信息承载量2.3 计算权重和得分 3.案例分析 1.算法原理介绍 CRITIC方法是一种客观权重赋权法,其基本思路是确定指标的客观权数以两个基本概念为基础。一是对比强度,它表示同一指标各个评价方案取值差…

目录

    • 1.算法原理介绍
    • 2.算法步骤
      • 2.1 数据标准化
      • 2.2 计算信息承载量
      • 2.3 计算权重和得分
    • 3.案例分析


1.算法原理介绍

  CRITIC方法是一种客观权重赋权法,其基本思路是确定指标的客观权数以两个基本概念为基础。一是对比强度,它表示同一指标各个评价方案取值差距的大小,以标准差的形式来表现。二是评价指标之间的冲突性,指标之间的冲突性是以指标之间的相关性为基础,如两个指标之间具有较强的正相关,说明两个指标冲突性较低。
  CRITIC方法的主要原理是通过对比强度和指标之间的冲突性来确定指标的客观权数,从而实现对评价方案的客观权重赋值。该方法适用于判断数据稳定性,并且适合分析指标或因素之间有着一定的关联的数据。

2.算法步骤

2.1 数据标准化

  设有 m m m个待评对象, n n n个评价指标,可以构成数据矩阵 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n,设数据矩阵内元素经过标准化处理过后的元素为 x i j ′ x^{'}_{ij} xij

  • 对于正向指标: x i j ′ = x i j − min ⁡ ( x j ) max ⁡ ( x j ) − min ⁡ ( x j ) x_{i j}^{\prime}=\frac{x_{i j}-\min \left(x_{j}\right)}{\max \left(x_{j}\right)-\min \left(x_{j}\right)} xij=max(xj)min(xj)xijmin(xj)
  • 对于负向指标: x i j ′ = max ⁡ ( x j ) − x i j max ⁡ ( x j ) − min ⁡ ( x j ) x_{i j}^{\prime}=\frac{\max \left(x_{j}\right)-x_{i j}}{\max \left(x_{j}\right)-\min \left(x_{j}\right)} xij=max(xj)min(xj)max(xj)xij

2.2 计算信息承载量

  • 首先计算第 j j j项指标的对比强度: σ j = ∑ i = 1 m ( x i j ′ − x ˉ j ′ ) m − 1 \sigma_{j}=\sqrt{\frac{\sum_{i=1}^{m}\left(x_{i j}^{\prime}-\bar{x}_{j}^{\prime}\right)}{m-1}} σj=m1i=1m(xijxˉj)

  • 然后计算评价指标之间的冲突性
    冲突性反映的是不同指标之间的相关程度,若呈现显著正相关性,则冲突性数值越小。设指标𝑗与其余指标矛盾性大小为 f j f_j fj,则 f j = ∑ i = 1 m ( 1 − r i j ) f_{j}=\sum_{i=1}^{m}\left(1-r_{i j}\right) fj=i=1m(1rij)
    其中 r i j r_{ij} rij表示指标 i i i与指标 j j j之间的相关系数,这里使用的是皮尔逊相关系数。

  • 最后计算信息承载量 C j = σ j f j C_{j}=\sigma_{j} f_{j} Cj=σjfj

    2.3 计算权重和得分

    计算权重: w j = C j ∑ j = 1 n C j w_{j}=\frac{C_{j}}{\sum_{j=1}^{n} C_{j}} wj=j=1nCjCj
    可见信息承载量越大权重越大。
    计算得分: S i = ∑ j = 1 n w j x i j ′ S_{i}=\sum_{j=1}^{n} w_{j} x_{i j}^{\prime} Si=j=1nwjxij

    3.案例分析

    假设你想购买一台新电视,考虑了以下指标:

  • 屏幕尺寸(英寸)——正向指标:尺寸越大,观看体验可能越好。

  • 价格(美元)——负向指标:价格越高,对于购买者来说可能越不吸引人。

  • 电视的能源效率(每年的电量消耗,以kWh为单位)—— 负向指标:消耗的电量越多,运行成本越高。

  • 用户评分(5星制中的星数) ——正向指标:评分越高,产品质量可能越好。
    具体数据如下表所示:

屏幕尺寸价格能源效率用户评分
电视A50500754.5
电视B55650804.8
电视C658001204.2
电视D45450654.0
电视E60700904.6

首先对数据进行标准化处理:

% 电视决策矩阵
decision_matrix = [50, 500, 75, 4.5;  % 电视A55, 650, 80, 4.8;  % 电视B65, 800, 120, 4.2; % 电视C45, 450, 65, 4.0;  % 电视D60, 700, 90, 4.6;  % 电视E
];
%数据标准化处理
for i=2:3decision_matrix(:, i) = (max(decision_matrix(:, i)) - decision_matrix(:, i))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end
for i=[1,4]decision_matrix(:, i) = (decision_matrix(:, i)-min(decision_matrix(:, i)))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end
% 数据标准化
norm_matrix = zscore(decision_matrix)

或者:

% 电视决策矩阵
decision_matrix = [50, 500, 75, 4.5;  % 电视A55, 650, 80, 4.8;  % 电视B65, 800, 120, 4.2; % 电视C45, 450, 65, 4.0;  % 电视D60, 700, 90, 4.6;  % 电视E
];
% 对负向指标进行处理,将其转换为正向指标
decision_matrix(:, 2) = max(decision_matrix(:, 2)) + 1 - decision_matrix(:, 2)
decision_matrix(:, 3) = max(decision_matrix(:, 3)) + 1 - decision_matrix(:, 3)
% 数据标准化
norm_matrix = zscore(decision_matrix)

标准化结果:
在这里插入图片描述然后再根据算法步骤计算权重:

% 计算标准间的相关系数
R = corrcoef(norm_matrix);% 确定冲突度和信息量
n = size(norm_matrix, 2); % 标准的数量
conflict = zeros(1, n);
for i = 1:nconflict(i) = std(norm_matrix(:, i)) * (1 - sum(R(i, :)) / (n - 1));
end% 计算权重
weights = conflict / sum(conflict);% 显示结果
disp('指标的权重:');
disp(weights);

计算结果:
在这里插入图片描述最后计算每个电视的得分:
在这里插入图片描述完整代码:

% 电视决策矩阵
decision_matrix = [50, 500, 75, 4.5;  % 电视A55, 650, 80, 4.8;  % 电视B65, 800, 120, 4.2; % 电视C45, 450, 65, 4.0;  % 电视D60, 700, 90, 4.6;  % 电视E
];
%数据标准化处理
for i=2:3decision_matrix(:, i) = (max(decision_matrix(:, i)) - decision_matrix(:, i))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end
for i=[1,4]decision_matrix(:, i) = (decision_matrix(:, i)-min(decision_matrix(:, i)))/(max(decision_matrix(:, i)) - min(decision_matrix(:, i)))
end% 对负向指标进行处理,将其转换为正向指标
% decision_matrix(:, 2) = max(decision_matrix(:, 2)) + 1 - decision_matrix(:, 2)
% decision_matrix(:, 3) = max(decision_matrix(:, 3)) + 1 - decision_matrix(:, 3)
% 数据标准化
norm_matrix = zscore(decision_matrix)% 计算标准间的相关系数
R = corrcoef(norm_matrix);% 确定冲突度和信息量
n = size(norm_matrix, 2); % 标准的数量
conflict = zeros(1, n);
for i = 1:nconflict(i) = std(norm_matrix(:, i)) * (1 - sum(R(i, :)) / (n - 1));
end% 计算权重
weights = conflict / sum(conflict);% 显示结果
disp('指标的权重:');
disp(weights);% 根据标准化的决策矩阵和权重计算每台电视的得分
scores = norm_matrix * weights';% 显示每台电视的得分
disp('每台电视的得分:');
for i = 1:size(scores, 1)fprintf('电视%d 的得分: %.2f\n', i, scores(i));
end
http://www.yayakq.cn/news/95337/

相关文章:

  • 微信内部劵网站怎么做行业解决方案
  • 福建网站建设推广搭建小网站
  • 网站域名过期未续费怎么办手工做火枪的网站
  • 建设电子商务网站的规划书合肥室内设计工作室
  • 建设公司网站都需要什么建德网站建设
  • 网站开发环境lmnp百度的网址怎么写
  • 南阳建站公司郑州seo网站排名
  • 百度如何推广网站衡水冀县做网站
  • 深圳网站建设的服务怎么样网页设计图标素材
  • 贵州铁路投资建设网站重庆室内设计
  • 重庆做网站建设公司哪家好网站导航广告怎么做
  • 做网站的最终目的建站技术服务
  • 如何查找昆明做网站服务的公司宣传栏制作效果图
  • 贵州网站建设设计公司用开源源码做淘宝客网站
  • 建设包银行官方网站平面网页设计是做什么的
  • wordpress的数据库有多大?佛山网站优化服务
  • 中国城乡住房和建设部网站首页wordpress 站内搜索 慢
  • 长沙网站设计优刻seo优化排名经验
  • 沈阳网站提升排名我想开个网店不知道怎么入手
  • 网站关键词越多越好吗自己建一个影视网站要怎么做
  • php企业网站模板下载地方网站源码
  • 手机登录不了建设银行网站网站建设与管理维护 李建青
  • 营销推广的主要方法兰州seo推广
  • 做不锈钢的网站jsp 做网站需要什么软件
  • 做定制网站wordpress自动取分类做菜单
  • 网站全屏宽度是多少合适西安市网站
  • 手机网站设计趋势石家庄电商网站
  • 有什么做调查的网站好如何在godaddy空间做手机网站
  • 济南设计网站站酷海洛
  • 网站开发薪资什么网站可以做网站测速对比