当前位置: 首页 > news >正文

江阴网站制作公司装饰公司logo图标图片

江阴网站制作公司,装饰公司logo图标图片,ASP网站开发步骤与过程,搜索引擎优化员简历回归预测|基于哈里斯鹰优化最小二乘支持向量机的数据回归预测Matlab程序HHO-LSSVM 多特征输入单输出含基础程序 文章目录 一、基本原理一、基本原理二、HHO-LSSVM的流程三、优缺点四、应用场景 二、实验结果三、核心代码四、代码获取五、总结 一、基本原理 HHO-LSSVM回归预测结…

回归预测|基于哈里斯鹰优化最小二乘支持向量机的数据回归预测Matlab程序HHO-LSSVM 多特征输入单输出含基础程序

文章目录

  • 一、基本原理
      • 一、基本原理
      • 二、HHO-LSSVM的流程
      • 三、优缺点
      • 四、应用场景
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

HHO-LSSVM回归预测结合了哈里斯鹰优化算法(Harris Hawk Optimization, HHO)和最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM),用于提高回归预测的精度。以下是详细的原理和流程。

一、基本原理

  1. 最小二乘支持向量机(LSSVM)

    • LSSVM 是一种支持向量机的变体,其目标是通过最小化一个平方误差函数来进行回归分析。
    • 其优化问题可以表示为:
      [
      \min \frac{1}{2} ||w||^2 + \frac{C}{2} \sum_{i=1}^{N} e_i^2
      ]
      其中 (w) 是权重向量,(C) 是正则化参数,(e_i) 是误差项。
    • LSSVM 的优势在于计算效率高,特别适合大规模数据集。
  2. 哈里斯鹰优化算法(HHO)

    • HHO 是一种基于鹰群捕猎行为的优化算法,模仿了鹰在捕猎时的策略。
    • HHO 的主要步骤包括探索和利用阶段,通过动态调整搜索策略来找到全局最优解。
    • 算法的核心在于通过适应性更新位置和速度来优化目标函数。

二、HHO-LSSVM的流程

  1. 数据预处理

    • 收集并清洗数据,确保数据的完整性和准确性。
    • 标准化或归一化数据,以便于模型训练。
  2. 构建LSSVM模型

    • 确定LSSVM的核函数和参数(如核参数和正则化参数),这通常会影响模型性能。
    • 初始化LSSVM模型,并选择适当的损失函数。
  3. 应用HHO优化

    • 初始化:生成一定数量的鹰个体,每个个体代表一组LSSVM的参数(如核参数和正则化参数)。
    • 评估适应度:使用LSSVM模型对每个个体进行训练,并通过交叉验证等方法评估其预测性能(例如均方误差或R²值)。
    • 更新位置
      • 在探索阶段,个体根据当前最优解进行随机移动。
      • 在利用阶段,个体根据猎物位置进行收敛。
    • 迭代更新:重复适应度评估和位置更新,直到满足终止条件(如达到最大迭代次数或适应度不再显著改善)。
  4. 模型训练与验证

    • 使用HHO优化得到的最佳参数训练最终的LSSVM模型。
    • 通过验证集或测试集评估模型的预测能力。
  5. 结果分析

    • 分析模型的预测结果,包括误差分析和可视化。
    • 根据实际需求调整模型参数或选择不同的特征进行二次优化。

三、优缺点

  • 优点

    • 结合了两种强大的机器学习方法,能够提高回归预测的精度。
    • HHO算法在全局搜索方面表现良好,能够避免局部最优解。
  • 缺点

    • 计算复杂度较高,尤其是在处理大规模数据时。
    • 参数调优过程可能比较耗时。

四、应用场景

HHO-LSSVM可以广泛应用于金融预测、工程设计、环境监测等需要高精度回归分析的领域。

通过以上流程,HHO-LSSVM能够有效地结合优化算法和机器学习技术,实现更为精确的回归预测。

二、实验结果

1.输入多个特征,输出单个变量,多变量回归预测;

2.excel数据,前6列输入,最后1列输出,运行主程序即可,所有文件放在一个文件夹;

3.命令窗口输出R2、MSE、MAE;

4.可视化:代码提供了可视化工具,用于评估模型性能,包括真实值与预测值的收敛图、对比图、拟合图、残差图。
HHO-LSSVM
在这里插入图片描述
LSSVM
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

http://www.yayakq.cn/news/608628/

相关文章:

  • 电子商务官方网站网站建设为什么不给源代码
  • 公司网站建设的费用如何入账淘客类网站如何做排名
  • 买过域名之前就可以做网站了吗?404网站怎么做
  • 响应式制作网站建设重庆市建筑工程造价信息网官网
  • 网站建设淘宝创建一个平台
  • 如何在网站添加代码移动互联网开发研究方向
  • 义乌设计网站响应式网站和不响应式
  • 用织梦系统做网站网站建设要与安全防护同步规划
  • 企业型网站建设费用网站做排名教程
  • 做网站所需要的项东莞网站建设方案表
  • 餐饮官网建站模板微网站建设目的
  • 网站建设中成本怎么描述网站建设与管理的实训报告
  • 太原网站建设网站软件开发5个过程
  • 做网站需要哪些证书免费微网站与公众号平台对接
  • 微信推广网站建设校园网站建设方向
  • 做医院网站及微信公众号价格wordpress导航栏插件
  • 5网站建站网站开发业务方向架构文档
  • 台州那家网站做的好寓意好有内涵的公司名字
  • php做的网站怎么运行帮人做网站好挣吗
  • 网站建设需要干什么做文案策划需要知道些什么网站
  • 回收手机的网站哪家好织梦网站被攻击
  • wordpress仿百度文库南昌网站优化网站开发
  • 网上有哪些接单做效果图的网站天蝎做网站建网站
  • 网站查询功能怎么做vue php 哪个做网站 好
  • 网站建设公司税率企业网站建设与优化
  • 江西网站开发方案贵州企业展示型网站建设
  • 好的网站页面湖南手机平台网
  • 龙华网站建设哪家好服装生产厂商网站建设方案
  • 网站搭建软件工具网站开发 哪些技术
  • 上海网站开发薪资福建省住建厅网站官网