当前位置: 首页 > news >正文

重庆市建设公共资源交易中心网站网络网站销售

重庆市建设公共资源交易中心网站,网络网站销售,垦利网站建设,网站关键词快速排名服务PyTorch是动态图,即计算图的搭建和运算是同时的,随时可以输出结果;而TensorFlow是静态图。 在pytorch的计算图里只有两种元素:数据(tensor)和 运算(operation) 运算包括了&#xf…

PyTorch是动态图,即计算图的搭建和运算是同时的,随时可以输出结果;而TensorFlow是静态图。

在pytorch的计算图里只有两种元素:数据(tensor)和 运算(operation)

运算包括了:加减乘除、开方、幂指对、三角函数等可求导运算

数据可分为:叶子节点(leaf node)和非叶子节点;叶子节点是用户创建的节点,不依赖其它节点;它们表现出来的区别在于反向传播结束之后,非叶子节点的梯度会被释放掉,只保留叶子节点的梯度,这样就节省了内存。如果想要保留非叶子节点的梯度,可以使用retain_grad()方法。

torch.tensor 具有如下属性:

  • 查看 是否可以求导 requires_grad
  • 查看 运算名称 grad_fn
  • 查看 是否为叶子节点 is_leaf
  • 查看 导数值 grad

针对requires_grad属性,自己定义的叶子节点默认为False,而非叶子节点默认为True,神经网络中的权重默认为True。判断哪些节点是True/False的一个原则就是从你需要求导的叶子节点到loss节点之间是一条可求导的通路。

当我们想要对某个Tensor变量求梯度时,需要先指定requires_grad属性为True,指定方式主要有两种:

x = torch.tensor(1.).requires_grad_() # 第一种x = torch.tensor(1., requires_grad=True) # 第二种

PyTorch提供两种求梯度的方法:backward() and torch.autograd.grad() ,他们的区别在于前者是给叶子节点填充.grad字段,而后者是直接返回梯度给你,我会在后面举例说明。还需要知道y.backward()其实等同于torch.autograd.backward(y)

一个简单的求导例子是:y=(x+1)∗(x+2) ,计算 ∂y/∂x ,假设给定 x=2
先画出计算图

手算:∂y/∂x=(x+2)*1+(x+1)*1->7

使用backward()

x = torch.tensor(2., requires_grad=True)a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)y.backward()
print(x.grad)
>>>tensor(7.)

看一下这几个tensor的属性

print("requires_grad: ", x.requires_grad, a.requires_grad, b.requires_grad, y.requires_grad)
print("is_leaf: ", x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
print("grad: ", x.grad, a.grad, b.grad, y.grad)>>>requires_grad:  True True True True
>>>is_leaf:  True False False False
>>>grad:  tensor(7.) None None None

使用backward()函数反向传播计算tensor的梯度时,并不计算所有tensor的梯度,而是只计算满足这几个条件的tensor的梯度:1.类型为叶子节点、2.requires_grad=True、3.依赖该tensor的所有tensor的requires_grad=True。所有满足条件的变量梯度会自动保存到对应的grad属性里。

使用autograd.grad()

x = torch.tensor(2., requires_grad=True)a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)grad = torch.autograd.grad(outputs=y, inputs=x)
print(grad[0])
>>>tensor(7.)

因为指定了输出y,输入x,所以返回值就是 ∂x/∂y 这一梯度,完整的返回值其实是一个元组,保留第一个元素就行,后面元素是

二阶求导

求一阶导可以用backward()

x = torch.tensor(2., requires_grad=True)
y = torch.tensor(3., requires_grad=True)z = x * x * yz.backward()
print(x.grad, y.grad)
>>>tensor(12.) tensor(4.)

也可以用autograd.grad()

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x)
print(grad_x[0])
>>>tensor(12.)

为什么不在这里面同时也求对y的导数呢?因为无论是backward还是autograd.grad在计算一次梯度后图就被释放了,如果想要保留,需要添加retain_graph=True

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_y = torch.autograd.grad(outputs=z, inputs=y)print(grad_x[0], grad_y[0])
>>>tensor(12.) tensor(4.) 

再来看如何求高阶导,理论上其实是上面的grad_x再对x求梯度,试一下看

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_xx = torch.autograd.grad(outputs=grad_x, inputs=x)print(grad_xx[0])
>>>RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

报错了,虽然retain_graph=True保留了计算图和中间变量梯度, 但没有保存grad_x的运算方式,需要使用creat_graph=True在保留原图的基础上再建立额外的求导计算图,也就是会把 ∂z/∂x=2xy 这样的运算存下来

# autograd.grad() + autograd.grad()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x, create_graph=True)
grad_xx = torch.autograd.grad(outputs=grad_x, inputs=x)print(grad_xx[0])
>>>tensor(6.)

grad_xx这里也可以直接用backward(),相当于直接从 ∂z/∂x=2xy 开始回传

# autograd.grad() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad = torch.autograd.grad(outputs=z, inputs=x, create_graph=True)
grad[0].backward()print(x.grad)
>>>tensor(6.)

 也可以先用backward()然后对x.grad这个一阶导继续求导

# backward() + autograd.grad()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * yz.backward(create_graph=True)
grad_xx = torch.autograd.grad(outputs=x.grad, inputs=x)print(grad_xx[0])
>>>tensor(6.)

那是不是也可以直接用两次backward()呢?第二次直接x.grad从开始回传,我们试一下

# backward() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * yz.backward(create_graph=True) # x.grad = 12
x.grad.backward()print(x.grad)
>>>tensor(18., grad_fn=<CopyBackwards>)

发现了问题,结果不是6,而是18,发现第一次回传时输出x梯度是12。这是因为PyTorch使用backward()时默认会累加梯度,需要手动把前一次的梯度清零

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * yz.backward(create_graph=True)
x.grad.data.zero_()
x.grad.backward()print(x.grad)
>>>tensor(6., grad_fn=<CopyBackwards>)

向量求导

有没有发现前面都是对标量求导,如果不是标量会怎么样呢?

x = torch.tensor([1., 2.]).requires_grad_()
y = x + 1y.backward()
print(x.grad)
>>>RuntimeError: grad can be implicitly created only for scalar outputs

x = torch.tensor([1., 2.]).requires_grad_()
y = x * xy.sum().backward()
print(x.grad)
>>>tensor([2., 4.])

http://www.yayakq.cn/news/484710/

相关文章:

  • 西安商城类网站制作wordpress开发工作
  • 有什么比较好的画册设计网站网页制作步骤教程
  • 自己做的网站在浏览器上显示不安全unity可以做网站吗
  • php官网网站建设做网站排名要懂那些
  • 手机网站的优缺点搭建网站原理
  • 做网站公司青岛网站备案认领
  • 旅游做攻略用什么网站好网站素材站
  • 建设一个小说网站win2012服务器做网站
  • 有没有女的做任务的网站广东官网网站建设怎么样
  • 北京网站优化公司如何做电脑网站用什么软件好用吗
  • 专业的魔站建站系统建设局网站简介
  • 外贸网站屏蔽国内ip番禺知名网站建设公司
  • 新郑整站优化168分类信息发布网
  • 龙之向导外贸网站网址网页游戏大全免费
  • 诚信通旺铺网站建设wordpress登录你将在2秒引导
  • 做网站怎么发展客户网站建设有哪些种类
  • 中山网站建设找丁生哪里有营销型网站最新报价
  • 网站不能批量上传图片wordpress全站ajax代码
  • php网站开发个人职责微信手机网页版登录入口官网
  • 二手交易网站建设目标网络营销案例ppt
  • 网站后台管理界面代码酒吧网站设计
  • 各大网站网络推广的收费wordpress商城教程
  • 网站制作的电话北京注册建设公司网站
  • 给个网站好人有好报2020免费流量查询
  • 做网站如何防止被坑新手如何找cps推广渠道
  • 成都模板建站网站ui设计用什么软件做
  • 电商网站设计的原则网站追加备案
  • 做网站有几种语言如何查看一个网站做的外链
  • 菏泽做网站建设的公司自建网站平台 优帮云
  • 网站建设域名是什么意思wordpress 仿制