当前位置: 首页 > news >正文

网站建设大概费用扬州市网站建设

网站建设大概费用,扬州市网站建设,邢台专业网站建设源码,卖建材的网站有哪些wandb.sweep: 低代码,可视化,分布式 自动调参工具。使用wandb 的 sweep 进行超参调优,具有以下优点。(1)低代码:只需配置一个sweep.yaml配置文件,或者定义一个配置dict,几乎不用编写调参相关代码。(2)可视化…

wandb.sweep: 低代码,可视化,分布式 自动调参工具。

使用wandb 的 sweep 进行超参调优,具有以下优点。

(1)低代码:只需配置一个sweep.yaml配置文件,或者定义一个配置dict,几乎不用编写调参相关代码。

(2)可视化:在wandb网页中可以实时监控调参过程中每次尝试,并可视化地分析调参任务的目标值分布,超参重要性等。

(3)分布式:sweep采用类似master-workers的controller-agents架构,controller在wandb的服务器机器上运行,agents在用户机器上运行,controller和agents之间通过互联网进行通信。同时启动多个agents即可轻松实现分布式超参搜索。

公众号后台回复关键词:wandb,获取本文notebook代码和B站视频演示。

使用 wandb 的sweep 调参的缺点:

需要联网:由于wandb的controller位于wandb的服务器机器上,wandb日志也需要联网上传,在没有互联网的环境下无法正常使用wandb 进行模型跟踪 以及 wandb sweep 可视化调参。

d6731f3afe349a385fa50a5eb394b50a.png

〇,使用Sweep的3步骤

  1. 配置 sweep_config

配置调优算法,调优目标,需要优化的超参数列表 等等。
  1. 初始化 sweep controller:

sweep_id = wandb.sweep(sweep_config,project)
  1. 启动 sweep agents:

wandb.agent(sweep_id, function=train)
import os,PIL 
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch 
from torch import nn 
import torchvision 
from torchvision import transforms
import datetime
import wandb wandb.login()
from argparse import Namespacedevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')#初始化参数配置
config = Namespace(project_name = 'wandb_demo',batch_size = 512,hidden_layer_width = 64,dropout_p = 0.1,lr = 1e-4,optim_type = 'Adam',epochs = 15,ckpt_path = 'checkpoint.pt'
)

一. 配置 Sweep config

详细配置文档可以参考:https://docs.wandb.ai/guides/sweeps/define-sweep-configuration

1,选择一个调优算法

Sweep支持如下3种调优算法:

(1)网格搜索:grid. 遍历所有可能得超参组合,只在超参空间不大的时候使用,否则会非常慢。

(2)随机搜索:random. 每个超参数都选择一个随机值,非常有效,一般情况下建议使用。

(3)贝叶斯搜索:bayes. 创建一个概率模型估计不同超参数组合的效果,采样有更高概率提升优化目标的超参数组合。对连续型的超参数特别有效,但扩展到非常高维度的超参数时效果不好。

sweep_config = {'method': 'random'}

2,定义调优目标

设置优化指标,以及优化方向。

sweep agents 通过 wandb.log 的形式向 sweep controller 传递优化目标的值。

metric = {'name': 'val_acc','goal': 'maximize'   }
sweep_config['metric'] = metric

3,定义超参空间

超参空间可以分成 固定型,离散型和连续型。

  • 固定型:指定 value

  • 离散型:指定 values,列出全部候选取值。

  • 连续性:需要指定 分布类型 distribution, 和范围 min, max。用于 random 或者 bayes采样。

sweep_config['parameters'] = {}# 固定不变的超参
sweep_config['parameters'].update({'project_name':{'value':'wandb_demo'},'epochs': {'value': 10},'ckpt_path': {'value':'checkpoint.pt'}})# 离散型分布超参
sweep_config['parameters'].update({'optim_type': {'values': ['Adam', 'SGD','AdamW']},'hidden_layer_width': {'values': [16,32,48,64,80,96,112,128]}})# 连续型分布超参
sweep_config['parameters'].update({'lr': {'distribution': 'log_uniform_values','min': 1e-6,'max': 0.1},'batch_size': {'distribution': 'q_uniform','q': 8,'min': 32,'max': 256,},'dropout_p': {'distribution': 'uniform','min': 0,'max': 0.6,}
})

4,定义剪枝策略 (可选)

可以定义剪枝策略,提前终止那些没有希望的任务。

sweep_config['early_terminate'] = {'type':'hyperband','min_iter':3,'eta':2,'s':3
} #在step=3, 6, 12 时考虑是否剪枝
from pprint import pprint
pprint(sweep_config)

二. 初始化 sweep controller

sweep_id = wandb.sweep(sweep_config, project=config.project_name)

三, 启动 Sweep agent

我们需要把模型训练相关的全部代码整理成一个 train函数。

def create_dataloaders(config):transform = transforms.Compose([transforms.ToTensor()])ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform)ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)ds_train_sub = torch.utils.data.Subset(ds_train, indices=range(0, len(ds_train), 5))dl_train =  torch.utils.data.DataLoader(ds_train_sub, batch_size=config.batch_size, shuffle=True,num_workers=2,drop_last=True)dl_val =  torch.utils.data.DataLoader(ds_val, batch_size=config.batch_size, shuffle=False, num_workers=2,drop_last=True)return dl_train,dl_val
def create_net(config):net = nn.Sequential()net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=config.hidden_layer_width,kernel_size = 3))net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) net.add_module("conv2",nn.Conv2d(in_channels=config.hidden_layer_width,out_channels=config.hidden_layer_width,kernel_size = 5))net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))net.add_module("dropout",nn.Dropout2d(p = config.dropout_p))net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))net.add_module("flatten",nn.Flatten())net.add_module("linear1",nn.Linear(config.hidden_layer_width,config.hidden_layer_width))net.add_module("relu",nn.ReLU())net.add_module("linear2",nn.Linear(config.hidden_layer_width,10))return net
def train_epoch(model,dl_train,optimizer):model.train()for step, batch in enumerate(dl_train):features,labels = batchfeatures,labels = features.to(device),labels.to(device)preds = model(features)loss = nn.CrossEntropyLoss()(preds,labels)loss.backward()optimizer.step()optimizer.zero_grad()return model
def eval_epoch(model,dl_val):model.eval()accurate = 0num_elems = 0for batch in dl_val:features,labels = batchfeatures,labels = features.to(device),labels.to(device)with torch.no_grad():preds = model(features)predictions = preds.argmax(dim=-1)accurate_preds =  (predictions==labels)num_elems += accurate_preds.shape[0]accurate += accurate_preds.long().sum()val_acc = accurate.item() / num_elemsreturn val_acc
def train(config = config):dl_train, dl_val = create_dataloaders(config)model = create_net(config); optimizer = torch.optim.__dict__[config.optim_type](params=model.parameters(), lr=config.lr)#======================================================================nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')wandb.init(project=config.project_name, config = config.__dict__, name = nowtime, save_code=True)model.run_id = wandb.run.id#======================================================================model.best_metric = -1.0for epoch in range(1,config.epochs+1):model = train_epoch(model,dl_train,optimizer)val_acc = eval_epoch(model,dl_val)if val_acc>model.best_metric:model.best_metric = val_acctorch.save(model.state_dict(),config.ckpt_path)   nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')print(f"epoch【{epoch}】@{nowtime} --> val_acc= {100 * val_acc:.2f}%")#======================================================================wandb.log({'epoch':epoch, 'val_acc': val_acc, 'best_val_acc':model.best_metric})#======================================================================        #======================================================================wandb.finish()#======================================================================return model   #model = train(config)

一切准备妥当,点火🔥🔥。

# 该agent 随机搜索 尝试5次
wandb.agent(sweep_id, train, count=5)

四,调参可视化和跟踪

1,平行坐标系图

可以直观展示哪些超参数组合更加容易获取更好的结果。

7366fd427d9e456030174fd9764948ec.png


2,超参数重要性图

可以显示超参数和优化目标最终取值的重要性,和相关性方向。

79447d4928b8ac70a543e57a9c7141f7.png


caa2b93c396396eb37a888a052bd7cdf.png

http://www.yayakq.cn/news/107924/

相关文章:

  • 农产品网站建设的主要工作wordpress打开慢排查
  • 南城网站建设公司策划西安企业建站费用
  • 怎么把自己做的网站上传到网上上海招聘网官方网站
  • 织梦 调用网站地址人事代理网站建设
  • 怎么做网站能快速赚钱龙岩网站建设极速建站
  • 温州网站推广外包qq空间网站根目录
  • 扬州自适应网站建设asp网站 底部版权所有
  • 手机网站设计公司哪家好中国建设人才网官网登录入口2022
  • 徐州建筑工程招投标网站宁波网站推广软件哪家强些
  • 一站式建设网站深圳做电子工厂的网站
  • 佛山h5网站公司卢龙网站建设
  • 网站运营的具体工作包括哪些陕西省建设监理工程协会网站
  • 韩语网站建设快看点自媒体注册入口
  • 广州网站建设报价单如何维护公司网页
  • 吉林大学建设工程学院网站编程网站项目做哪个比较好
  • 网站开发全栈工程师技能图南昌知名的网站建设公司
  • 做3D打印样品用什么外贸网站好网站建设 虚拟化
  • 哪里有营销型网站公司合肥网站优化方案
  • 91色做爰免费网站wordpress 来源
  • 手机怎样建网站昆明app开发哪家好
  • 茌平企业做网站推广自己做短视频的网站
  • 申请域名就可以做网站了吗网站开发h5页面
  • 婚庆公司网站建设总结跨境电商哪个平台比较好做
  • 如何把网站转换成wap站点seo010
  • 网站做下cdn装饰设计效果图
  • 惠州建设银行网站做外贸网站可以收付款吗
  • 开发小网站一般多少钱一个洛阳市网站建设
  • 商城网站设计一站式服务如何连接到网站服务器
  • 网站被301跳转深圳住房和建设局网站置换平台
  • 网站界面设计内容有哪些wordpress一数据库多网站