当前位置: 首页 > news >正文

培训网站源码wordpress旅游网站管理系统

培训网站源码wordpress,旅游网站管理系统,余姚建设网站,郓城做网站哪家好首先理清我们需要实现什么功能,怎么实现,提供一份整体逻辑:包括主函数和功能函数 主函数逻辑: 1. 读图,两张rgb(cv::imread) 2. 找到两张rgb图中的特征点匹配对 2.1定义所需要的参数:keypoints…

首先理清我们需要实现什么功能,怎么实现,提供一份整体逻辑:包括主函数和功能函数

主函数逻辑:

 1. 读图,两张rgb(cv::imread)

 2. 找到两张rgb图中的特征点匹配对

       2.1定义所需要的参数:keypoints1, keypoints2,matches

       2.2 提取每张图像的检测 Oriented FAST 角点位置并匹配筛选(调用功能函数1)

 3. 建立3d点(像素坐标到相机坐标)

        3.1读出深度图(cv::imread)

        3.2取得每个匹配点对的深度

                3.2.1 得到第y行,第x个像素的深度值

                   (ushort d = d1.ptr<unsigned short> (row)[column])

                3.2.2 去除没有深度的点

                3.2.3 转到相机坐标系(调用功能函数2)

4. 调用epnp求解(input:3d点,2d点对,内参,是否去畸变,求解方式)

        4.1求解(cv::solvePnP)

         4.2 求解结果为向量,需要转成矩阵(cv::Rodrigues)

int main( int agrc, char** agrv) {
//  1. 读图(两张rgb)Mat image1 = imread(agrv[1] , CV_LOAD_IMAGE_COLOR );Mat image2 = imread(agrv[2] , CV_LOAD_IMAGE_COLOR );assert(image1.data && image2.data && "Can not load images!");//  2. 找到两张rgb图中的特征点匹配对// 2.1定义keypoints1, keypoints2,matchesstd::vector<KeyPoint>keypoints1,keypoints2;std::vector<DMatch>matches;// 2.2 提取每张图像的检测 Oriented FAST 角点位置并匹配筛选Featurematcher(image1,image2, keypoints1,keypoints2,matches);//  3. 建立3d点(像素坐标到相机坐标)Mat K  = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);//内参vector<Point3f> pts_3d;vector<Point2f> pts_2d;//3.1读出深度图Mat d1 =imread(agrv[3],CV_LOAD_IMAGE_UNCHANGED);//3.2取得每个匹配点对的深度(ushort d = d1.ptr<unsigned short> (row)[column];就是指向d1的第row行的第column个数据。数据类型为无符号的短整型 )for (DMatch m: matches){//3.2.1 得到第y行,第x个位置的像素的深度值ushort d = d1.ptr<unsigned short>(int (keypoints1[m.queryIdx].pt.y)) [int(keypoints1[m.queryIdx].pt.x)];// 3.2.2 去除没有深度的点if(d==0){continue;}float dd=d/5000.0 ;//3.2.3 转到相机坐标系Point2d p1 = pixtocam(keypoints1[m.queryIdx].pt , K);pts_3d.push_back(Point3f(p1.x*dd,p1.y*dd,dd));pts_2d.push_back(keypoints2[m.trainIdx].pt);}cout << "3d-2d pairs: " << pts_3d.size() << endl;//  4. 调用epnp求解(input:3d点,2d点对,内参,false,求解方式)// solvePnP( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );Mat r,t;// 4.1求解solvePnP(pts_3d,pts_2d,K,Mat(), r,t,false,SOLVEPNP_EPNP);// 4.2 求解结果为向量,需要转成矩阵Mat R;cv::Rodrigues(r,R);cout<<"R="<<R<<endl;cout<<"T="<<t<<endl;// 5.可视化匹配Mat img_goodmatch;drawMatches(image1, keypoints1, image2, keypoints2, matches, img_goodmatch);imshow("good matches", img_goodmatch);waitKey(0);return 0;
}

功能函数1:  Featurematcher

实现过程在前几篇中已经详细说明:视觉slam14讲 逐行解析代码 ch7 / orb_cv.cpp

2.2.1初始化存储特征点数据的变量

2.2.2 提取每张图像的检测 Oriented FAST 角点位置

2.2.3 计算图像角点的BRIEF描述子

2.2.4 根据刚刚计算好的BRIEF描述子,对两张图的角点进行匹配

2.2.5 匹配点对筛选计算最小距离和最大距离

2.2.6 当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.

void Featurematcher( const Mat &image1, const Mat &image2, std::vector<KeyPoint>&keypoints1, std::vector<KeyPoint> &keypoints2,  std::vector<DMatch> &matches){// 2.2.1初始化存储特征点数据的变量Mat descr1, descr2;Ptr<FeatureDetector> detector = ORB::create();Ptr<DescriptorExtractor> descriptor = ORB::create();Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");// 2.2.2 提取每张图像的检测 Oriented FAST 角点位置detector->detect(image1, keypoints1);detector->detect(image2, keypoints2);// 2.2.3 计算图像角点的BRIEF描述子descriptor->compute(image1, keypoints1, descr1);descriptor->compute(image2, keypoints2, descr2);// 2.2.4 根据刚刚计算好的BRIEF描述子,对两张图的角点进行匹配std::vector<DMatch> match;matcher->match(descr1, descr2, match);Mat img_match;drawMatches(image1, keypoints1, image2, keypoints2, match, img_match);imshow("all matches", img_match);waitKey(0);// 2.2.5 匹配点对筛选计算最小距离和最大距离double min_dis = 10000, max_dis = 0;// 2.2.5.1找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离for (int i = 0; i < descr1.rows; i++){double dist = match[i].distance;if (dist < min_dis)min_dis = dist;if (dist > max_dis)max_dis = dist;}cout<<"max_dis="<<max_dis<<endl;cout<<"min_dis="<<min_dis<<endl;//2.2.6 当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.for (int i = 0; i < descr1.rows; i++){if (match[i].distance<= max(2*min_dis,30.0)){matches.push_back(match[i]);}       }cout<<"matches.size="<<matches.size()<<endl;
}

功能函数2:

将输入的像素坐标(x ,y)转化到归一化相机坐标系下得到(X,Y)

我们知道:相机的投影模型为:u=KP, 即

\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}=\begin{bmatrix} f_{x} &0&c_x\\ 0&f_y&c_y\\ 0&0&1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}

所以 X=(x-c_x)/f_x     ,    Y=(y-c_y)/f_y

Point2d pixtocam(const  Point2d &p ,  const Mat  &K){return Point2d(// X=(u-cx)/fx(p.x - K.at<double>(0,2)) / K.at<double>(0,0) ,// Y=(v-cy)/fy(p.y-K.at<double>(1,2)) / K.at<double>(1,1));
}

最后匹配效果及位姿结果:

allmatch:

goodmatch:

位姿输出:R,T:

http://www.yayakq.cn/news/214461/

相关文章:

  • 有没有女的做任务的网站适合前端新手做的网页
  • 怎样制作免费的网站哪些网站在哪找的
  • 旅游网站建设的目标是什么意思好123上网主页
  • 山西科技网站建设怎样在小程序开店
  • 自助建站系统免授权版如何注册一家投资公司
  • 阿里巴巴国际站官网首页四川省建设监理协会网站
  • 昆山网站建设网站手机app一般用什么开发
  • 网站备案和实名认证噼哩噼哩pilipili污染版
  • 如何建设高等数学课程网站泰安网站建设焦点网络
  • 网站 短链接怎么做wordpress如何加表情
  • 中国建设工程造价管理协会网站查询职业生涯规划书模板
  • 怎样建立一个自己的网站wordpress qtranslate
  • 网站加油站网站建设教程小说
  • seo网站建设规划网页设计结构
  • 学校网站建设团队番禺做网站的公司
  • 常州企业建站系统网站建设可行性分析报告模板
  • 哪里的网站建设微信文件传输网页版入口
  • 济南网站建设(力选聚搜网络)有哪些可以做任务的网站
  • 网站网址ip查询太仓网站建设找哪家
  • 小程序怎么引流推广海外网站推广优化专员
  • 聊城手机网站公司电话网站建设怎么弄轮换图片
  • 网站修改工具盐城网站建设小程序公司
  • 佛山网站建设公司怎么样wordpress本地化采用方法
  • 网站开发平台软件深圳十大外贸公司排名
  • 李沧做网站泾川县门户网站留言
  • 利用公共dns做网站解析asp.net做购物网站
  • 简单网站制作软件网络网站建设公司排名
  • 网站如何做前后端分离上海企业倒闭
  • 网站设计用ps 怎么做网站建设及解析流程
  • 重庆的网站建设企业建设营销网站的基本步骤有哪些