当前位置: 首页 > news >正文

适合女生做的网站网络营销的发展趋势和前景

适合女生做的网站,网络营销的发展趋势和前景,如何进行搜索引擎优化,网站 免备案赛题分析 大赛地址 https://tianchi.aliyun.com/competition/entrance/532098/introduction?spma2c22.12281925.0.0.52b97137bpVnmh 任务描述 主体事件检测是语言文本分析和金融领域智能应用的重要任务之一,如在金融风控领域往往会对公司主体进行风险事件的检测…

赛题分析

大赛地址

https://tianchi.aliyun.com/competition/entrance/532098/introduction?spm=a2c22.12281925.0.0.52b97137bpVnmh

任务描述

主体事件检测是语言文本分析和金融领域智能应用的重要任务之一,如在金融风控领域往往会对公司主体进行风险事件的检测。基于句子粒度的上下文进行公司事件检测,事件包含事件类型和主体要素(即公司主体),句中可能存在多个事件,多个公司主体且每个公司都可能存在多个事件类型标签,并且各类型标注样本分布不均匀,部分类型样本量较少,我们希望检测出文本中包含的所有主体事件。本次评测任务的文本语料来自于互联上的公开新闻、报告。

数据描述

输入 :一段文本X

输出 :文本X中所有的事件类型及对应的公司主体

示例

输入:{"text_id": "123456", "text": "播州城投多次被列为被执行人,同时涉及一系列诉讼案件并多次被纳入失信被执行人名单;由于公司债务逾期规模大,区域债务负担重, 7月母公司遵义道桥建设(集团)有限公司("遵义道桥")开始进行债务重组并将银行类债权延期 10年"}

输出:{"text_id": "123456", "events": [{"type":"被列为失信被执行人" ,"entity":"播州城投"} , {"type": "债务违约","entity": "播州城投"}, {"type": "债务重组", "entity": "遵义道桥建设(集团)有限公司"}, {"type": "债务重组", "entity": "遵义道桥"}]}

方案陈述

整体方案的模型架构

结构图如下所示:

  • 传统模型:主要依赖传统的信息抽取方法来做,包括 bert+crf、 bert+span 和 bert+global pointer等方案;

  • LLMs:依赖已经预训练好的大模型,包括 mt5、mt0、Ziya-LLaMA、 chatglm 等,微调方式包括全量指令微调以及基于 Lora 的指令微调;

  • 后处理:针对预测的数据进行异常符、原文修正、大小写修正、繁体 简体修正等;

  • 融合:采用加权投票融合;

下面依次介绍每个方案的细节。

传统方案之bert-crf

crf这么基础的内容这里就不说了,用的就是原生的crf,没有进行魔改,需要说明一点的就是,这个任务中同一个公司主体如果有多个事件类型,crf这个方案是解决不了的,好在这个任务中这种一个公司主体对应多个事件类型的情况不多。

传统方案之bert-span

上文也说了,这个任务中存在一个公司主体对应多个事件类型的情况,为了兼容这种情况,我对原来的span编码解码框架稍稍进行了魔改,结构图如下:

原生的span结构以双指针的形式替代 CRF 模块,可以解决实体嵌套 问题,首尾指针可以截取一个实体,首位指针的类型指代这个截取的实体的标签类型,但是在本次任务中,为了解决一个公司主体对应多个事件类型的情况,我们改变了首尾指针的形式,融入多标签的思想,基于多标签的span指针可以轻松实现一个实体(公司主体)指向多个类型(事件类型)。

传统方案之bert-gp

gp用的就是苏剑林原生的方案,没有进行改动,所以呢,我也不想废话了,估计你们也不想听我废话,你们直接看苏神的讲解吧。苏剑林科学空间:https://spaces.ac.cn/archives/8265

大模型(LLM)方案

本次任务我们将大模型用在了事件检测任务上,主要尝试了mt5、chatglm、以及llma模型,训练方式是全参数微调和Lora微调。

指令构造

指令 1:

使用自然语言抽取二元组,请从句子中抽取出所有的事件类型及对应的公司主体, 句中可能存在多个事件、多个公司主体且每个公司都可能存在多个事件类型标签,最后以 (公司主体,事件类型)的形式回答。

例子:

"instruction":"使用自然语言抽取二元组,请从句子中抽取出所有的事件类型 及对应的公司主体,句中可能存在多个事件、多个公司主体且每个公司都可能存在多个事 件类型标签,最后以(公司主体,事件类型)的形式回答。","input":"而在此之前,从 2013 开始至 2018 年连续 5 年时间,苏州银行的核心一级资本充足率、一级资本充足率 均在下降,资本充足率在 2015 年出现回升后也再度连续三年下降","output":"(苏州 银行,资本充足不足)

指令 2:

这是一个金融实体抽取的任务,请从以下句子抽取公司主体以及相应的事件类 型,按(公司主体,事件类型)的形式回答。

例子:

这是一个金融实体抽取的任务,请从以下句子抽取公司主体以及相应的事件类 型,按(公司主体,事件类型)的形式回答。 例子:"instruction":"这是一个金融实体抽取的任务,请从以下句子抽取公司主体 以及相应的事件类型,按(公司主体,事件类型)的形式回答。","input":"而在此之 前,从 2013 开始至 2018 年连续 5 年时间,苏州银行的核心一级资本充足率、一级资 本充足率均在下降,资本充足率在 2015 年出现回升后也再度连续三年下降 ","output":"(苏州银行,资本充足不足)

微调

mt5、mt0 以及 umt5 经过多语种预训练,对于这个任务 也适配,在 large 模型,可以模型并行来训练, 在 xl 以及 xxl 模 型,需要基于 deepspeed 对模型参数进行切分来提高模型训练速度, xxl 模型,在 A100 卡上,全量微调。

Lora 指令微调:当前中文模型包括 chatglm、ziya-llama、ZhiXi (智 析)

本次基于大模型做事件检测任务部分参考如下范例:

总结

本次赛道任务,我们总结如下:

  • 在数据层面,我们做了一些数据增广,聚合相同事件类型下所有公司主体,随机替换同个类型的公司 实体进行数据生成;

  • 在传统方案上(crf、span、gp),我们通过一些手段(fgm、pgd、swa、ema、r-drop、multi-drop等)增强了模型的泛化性和鲁棒性;

  • 选择了多种的编码框架,crf是序列标记,span是指针抽取,gp是片段排列,LLM是基于指令的生成式,每一种框架都有自己的优势和短板,融合起来增益良多;

最后值得一提的是,通过本次任务,大模型(LLM)虽然参数大很多,训练时间长很多,但是单个大模型的效果并没有比传统方案的效果好,从性价比上甚至处于劣势,但是差异大,不同框架之间差异大,融合效果提升很多。

http://www.yayakq.cn/news/503032/

相关文章:

  • app和手机网站的区别v2ex 网站建设
  • 城乡建设网站投稿安徽四建东方建设有限公司网站
  • 做网站推广需要花多少钱个人网页制作在线
  • 网站建设上传网店代运营公司哪家好
  • 长春网站建设免费咨询常用的网页编辑软件
  • 企业网站建设业务报价单郑州企业建站免费咨询
  • 合肥网站建设需要多兼职网站开发需求
  • 学习网站开发心得体会恶意代码 wordpress
  • 龙岩市官方网站ps网站首页怎么设计
  • 表格布局网站今晚12点上海又要封控了吗
  • 视频素材网站怎么建光纤网络哪个公司好
  • 教育网站建设方案模板长沙网站建设公司哪家好
  • 深圳有做网站最近价格?福清手机网站建设
  • 手机网站设计机构唐山最新消息今天
  • 做垂直行业网站利润分析app公司的组织结构
  • 网站怎么做认证吗合肥高端网站建设
  • 制作网站首页分为哪几部分南昌市建设局网站
  • 无锡模板网站建设找哪个好小程序注册认证
  • 网站开发建设计入什么科目广告设计与制作模板图片
  • 网络营销方案定义思路专业网站推广优化
  • 聚合猫网站建设网站维护包括哪些工作
  • 网站备案信息批量查询工程公司起名
  • 做视频网站每部电影都要版权建筑钢结构网站
  • 什么语言做网站好九千营销工作室介绍
  • 莱芜市网站建设公司如何上传网站到云主机
  • 什么网站可以做外贸保定市做网站的电话
  • 房屋建设网站彩票源码论坛
  • 网站建设放什么会计科目dedecms怎么把一个网站的文章导出导到另一个站里
  • wordpress 站群插件必应搜索引擎入口官网
  • 网站做导航设计的作用是什么邢台58同城