当前位置: 首页 > news >正文

金融网站开发文档可以直接进入网站的代码

金融网站开发文档,可以直接进入网站的代码,有限公司网站建设 中企动力佛山,房地产公司网站建设方案主定理(Master Theorem)是用于分析递归算法时间复杂度的一个重要工具。它适用于形式化定义的一类递归关系,通常采用分治策略解决问题的情况。 目录 主定理简化版的局限主定理一般形式情况1: n l o g b a n^{log_{b}{a}} nlogb​a …

主定理(Master Theorem)是用于分析递归算法时间复杂度的一个重要工具。它适用于形式化定义的一类递归关系,通常采用分治策略解决问题的情况。

主定理简化版的局限

主定理简化版的三种情况:

  1. I F IF IF f ( n ) = O ( n l o g b ( a − ε ) ) f(n) = O(n^ {log_b(a - ε)}) f(n)=O(nlogb(aε)),and ε > 0 ε > 0 ε>0,Then T ( n ) = Θ ( n l o g b ( a ) ) T(n) = Θ(n^{log_b(a)}) T(n)=Θ(nlogb(a))
  2. I F IF IF f ( n ) = Θ ( n l o g b ( a ) ⋅ l o g k n ) f(n) = Θ(n^{log_b(a)} ·log^k n) f(n)=Θ(nlogb(a)logkn),and k ≥ 0 k ≥ 0 k0,Then T ( n ) = Θ ( n l o g b ( a ) ⋅ l o g k + 1 n ) T(n) = Θ(n^{log_b(a)} · log^{k+1} n) T(n)=Θ(nlogb(a)logk+1n)
  3. I F IF IF f ( n ) = Ω ( n l o g b ( a + ε ) ) f(n) = Ω(n^{log_b(a + ε)}) f(n)=Ω(nlogb(a+ε)),and ε > 0 ε > 0 ε>0 a ⋅ f ( n b ) ≤ c ⋅ f ( n ) a · f(\frac{n}{b}) ≤ c · f(n) af(bn)cf(n) 对于某个常数 c < 1 c < 1 c<1 和所有足够大的 n n n 成立,Then T ( n ) = Θ ( f ( n ) ) T(n) = Θ(f(n)) T(n)=Θ(f(n))

简化形式具有一定的限制条件,比如形式上必须是: T ( n ) = a ⋅ T ( n b ) + f ( n ) T(n)=a·T(\frac{n}{b})+f(n) T(n)=aT(bn)+f(n)

并且 f ( n ) = n c f(n) = n^{c} f(n)=nc

三个反例:

  1. 子问题数量不是常数

T ( n ) = n ⋅ T ( n 2 ) + n 2 T(n)=n \cdot T(\frac{n}{2})+n^{2} T(n)=nT(2n)+n2

  1. 子问题数量小于1

T ( n ) = 1 2 T ( n 2 ) + n 2 T(n)=\frac{1}{2}T(\frac{n}{2})+n^{2} T(n)=21T(2n)+n2

  1. 分解问题和合并解的时间不是 n c n^{c} nc

T ( n ) = 2 T ( n 2 ) + n l o g n T(n)=2T(\frac{n}{2})+nlogn T(n)=2T(2n)+nlogn


主定理一般形式

T ( n ) = a ⋅ T ( n b ) + f ( n ) , a > 0 , b > 1 T(n)=a·T(\frac{n}{b})+f(n),a>0,b>1 T(n)=aT(bn)+f(n),a>0,b>1

  1. I F IF IF ∃ ε > 0 \exists ε > 0 ε>0 使得 f ( n ) = O ( n l o g b ( a − ε ) ) f(n) = O(n^ {log_b(a - ε)}) f(n)=O(nlogb(aε)) ,Then T ( n ) = Θ ( n l o g b ( a ) ) T(n) = Θ(n^{log_b(a)}) T(n)=Θ(nlogb(a))
  2. I F IF IF ∃ k ≥ 0 \exists k ≥ 0 k0 使得 f ( n ) = Θ ( n l o g b ( a ) ⋅ l o g k n ) f(n) = Θ(n^{log_b(a)} ·log^k n) f(n)=Θ(nlogb(a)logkn),Then T ( n ) = Θ ( n l o g b ( a ) ⋅ l o g k + 1 n ) T(n) = Θ(n^{log_b(a)} · log^{k+1} n) T(n)=Θ(nlogb(a)logk+1n)
  3. I F IF IF ∃ ε > 0 \exists ε > 0 ε>0 使得 f ( n ) = Ω ( n l o g b ( a + ε ) ) f(n) = Ω(n^{log_b(a + ε)}) f(n)=Ω(nlogb(a+ε))
    且对于某个常数 c < 1 c < 1 c<1 和所有足够大的 n n n a ⋅ f ( n b ) ≤ c ⋅ f ( n ) a · f(\frac{n}{b}) ≤ c · f(n) af(bn)cf(n) ,Then T ( n ) = Θ ( f ( n ) ) T(n) = Θ(f(n)) T(n)=Θ(f(n))

主要考虑 函数 n l o g b a n^{log_{b}{a}} nlogba f ( n ) f(n) f(n) 的增长率关系

情况1: n l o g b a n^{log_{b}{a}} nlogba f ( n ) f(n) f(n) 增长的快

T ( n ) = 9 T ( n 3 ) + n T(n)=9T(\frac{n}{3})+n T(n)=9T(3n)+n

  • n l o g b a = n 2 n^{log_{b}{a}}=n^{2} nlogba=n2,
  • f ( n ) = n = O ( n 2 − ϵ ) , ϵ ≤ 1 f(n)=n=O(n^{2-\epsilon }),\epsilon \le1 f(n)=n=O(n2ϵ),ϵ1
  • ⇒ T ( n ) = O ( n 2 ) \Rightarrow T(n)=O(n^{2}) T(n)=O(n2)

情况2: n l o g b a n^{log_{b}{a}} nlogba f ( n ) f(n) f(n) 增长率类似

T ( n ) = T ( 2 n 3 ) + 1 T(n)=T(\frac{2n}{3})+1 T(n)=T(32n)+1

  • n l o g b a = n l o g 3 / 2 1 = n 0 = 1 n^{log_{b}{a}}=n^{log_{3/2}1}=n^{0}=1 nlogba=nlog3/21=n0=1,
  • f ( n ) = 1 = Θ ( n l o g b a l o g 0 n ) f(n)=1=Θ(n^{log_{b}{a}}log^{0}n) f(n)=1=Θ(nlogbalog0n)
  • ⇒ T ( n ) = O ( l o g n ) \Rightarrow T(n)=O(log n) T(n)=O(logn)

情况3: n l o g b a n^{log_{b}{a}} nlogba f ( n ) f(n) f(n) 增长的慢

  • f ( n ) f(n) f(n) n l o g b a n^{log_{b}{a}} nlogba 增长的更快,至少要快 Θ ( n ϵ ) Θ(n^{\epsilon}) Θ(nϵ) 倍,且 a f ( n b ) ≤ c f ( n ) af(\frac{n}{b}) \le cf(n) af(bn)cf(n)

T ( n ) = 3 T ( n 4 ) + n l o g n T(n)=3T(\frac{n}{4})+nlogn T(n)=3T(4n)+nlogn

  • n l o g b a = n l o g 4 3 = n 0.793 n^{log_{b}{a}}=n^{log_{4}3=n^{0.793}} nlogba=nlog43=n0.793,
  • f ( n ) = n l o g n = Ω ( n l o g 4 3 + ϵ ) , ϵ ≤ 0.207 f(n)=nlogn=Ω(n^{log_{4}3+\epsilon }),\epsilon \le0.207 f(n)=nlogn=Ω(nlog43+ϵ),ϵ0.207
  • a f ( n b ) = 3 ( n 4 ) l o g ( n 4 ) ≤ 3 4 n l o g n = c f ( n ) , c = 3 4 af(\frac{n}{b})=3(\frac{n}{4})log(\frac{n}{4}) \le \frac{3}{4}nlogn=cf(n),c=\frac{3}{4} af(bn)=3(4n)log(4n)43nlogn=cf(n),c=43
  • ⇒ T ( n ) = O ( n l o g n ) \Rightarrow T(n)=O(nlogn) T(n)=O(nlogn)

主定理不适用的情况

  1. n l o g b a n^{log_{b}{a}} nlogba f ( n ) f(n) f(n) 的增长率不可比
  2. n l o g b a n^{log_{b}{a}} nlogba f ( n ) f(n) f(n) 增长的快,但没有快 O ( n ϵ ) O(n^{\epsilon}) O(nϵ)
  3. n l o g b a n^{log_{b}{a}} nlogba f ( n ) f(n) f(n) 增长的慢,但没有慢 O ( n ϵ ) O(n^{\epsilon}) O(nϵ)

http://www.yayakq.cn/news/432755/

相关文章:

  • 做整体衣柜宣传海报的网站浙江省旅游企业网站建设情况
  • 张家界建设局网站wordpress首页显示文章图片
  • 网站设计有创意的主题儿童摄影网页制作代码html
  • 闵行交大附近网站建设深圳建伟业公司商城
  • 网站建设费可以进广告宣传费吗自助手机建站
  • 西安网站开发公司哪家强通城网站建设
  • 求西北地区网站建设专家 西安沉睡网络 官方网址?孟津网站建设
  • 响应式布局网站案例广告设计公司标语
  • 制作网站要不要域名网站建设 自适应
  • 苏州网站建设师h5动画用什么软件做
  • 镇海住房和建设交通局网站英文官网建设
  • 自己做网站怎么搜索网站优化工具
  • 专业做seo的网站网站开发ios
  • 校园网站开发的意义企业如何注册域名
  • 方维网站后台提示验证码错误北京网站开发哪家好
  • 购物网站搜索功能怎么做网站开发员工作职责
  • 辽阳专业网站建设品牌wordpress 媒体库 文件夹
  • 企业网站报价方案模板历下区网站建设公司
  • 怎样做网站优化 知乎表白网站在线制作软件
  • 沈阳网站制作 600元郑州专业seo首选
  • 重庆注册公司核名在哪个网站网站建设续费合同
  • 网站建设与网页设计论述题大朗镇住房规划建设局网站
  • 锡林郭勒盟建设工程管理网站网站推广策划方案和网站推广执行方案的区别
  • 中国第四冶金建设有限公司官方网站全国房产信息查询系统
  • 网站建设的前端用什么编程网络营销软文
  • 制作一个网站数据库怎么做的六盘水做网站
  • 网站建设业室内设计图片效果图
  • 自己做的网站注册用户无法收到激活邮箱的邮件杭州网站seo推广软件
  • 青海教育厅门户网站dedecms网站地图路径修改生成后 网站地图前台路径不变
  • 怎么样给一个网站做横向导航栏犀牛云网站建设特点