一步步教做音乐网站,南通网站设计专家,个人直播平台搭建,专门做试题的网站//资源限制 当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小#xff0c;以及其他类型的资源。
当为 Pod 中的容器指定了 request 资源时#xff0c;调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 li…//资源限制 当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小以及其他类型的资源。
当为 Pod 中的容器指定了 request 资源时调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量 供该容器使用。
如果 Pod 运行所在的节点具有足够的可用资源容器可以使用超出所设置的 request 资源量。不过容器不可以使用超出所设置的 limit 资源量。
如果给容器设置了内存的 limit 值但未设置内存的 request 值Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。
官网示例
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container///Pod 和 容器 的资源请求和限制
spec.containers[].resources.requests.cpu //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu //定义 cpu 的资源上限
spec.containers[].resources.limits.memory //定义内存的资源上限//CPU 资源单位 CPU 资源的 request 最小资源和 limit 最大资源以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU1个超线程。 Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源类似于Cgroup对CPU资源的时间分片。表达式 0.1 等价于表达式 100m毫核表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。 Kubernetes 不允许设置精度小于 1m 的 CPU 资源。
//内存 资源单位 内存的 request 和 limit 以字节为单位。可以以整数表示或者以10为底数的指数的单位E、P、T、G、M、K来表示 或者以2为底数的指数的单位Ei、Pi、Ti、Gi、Mi、Ki来表示。
如1KB10^310001MB10^610000001000KB1GB10^910000000001000MB
1KiB2^1010241MiB2^2010485761024KiB举例PS在买硬盘的时候操作系统报的数量要比产品标出或商家号称的小一些主要原因是标出的是以 MB、GB为单位的1GB 就是1,000,000,000Byte而操作系统是以2进制为处理单位的因此检查硬盘容量时是以MiB、GiB为单位1GiB2^301,073,741,824相比较而言1GiB要比1GB多出1,073,741,824-1,000,000,00073,741,824Byte所以检测实际结果要比标出的少一些。
https://kubernetes.io/zh-cn/docs/concepts/configuration/manage-resources-containers/示例1
apiVersion: v1
kind: Pod
metadata:name: frontend
spec:containers:- name: appimage: images.my-company.example/app:v4env:- name: MYSQL_ROOT_PASSWORDvalue: passwordresources:requests:memory: 64Micpu: 250mlimits:memory: 128Micpu: 500m- name: log-aggregatorimage: images.my-company.example/log-aggregator:v6resources:requests:memory: 64Micpu: 250mlimits:memory: 128Micpu: 500m此例子中的 Pod 有两个容器。每个容器的 request最小 值为 0.25 cpu 和 64MiB 内存每个容器的 limit 最大值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存总的资源 limit 为 1 cpu 和 256MiB 内存。
示例2
vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:name: frontend
spec:containers:- name: webimage: nginxenv:- name: WEB_ROOT_PASSWORDvalue: passwordresources:requests:memory: 64Micpu: 250mlimits:memory: 128Micpu: 500m- name: dbimage: mysqlenv:- name: MYSQL_ROOT_PASSWORDvalue: abc123resources:requests:memory: 512Mi 128cpu: 0.5limits:memory: 1Gi 256cpu: 1#根据提供的 pod2.yaml 文件中的配置信息创建或更新一个 Pod 对象
kubectl apply -f pod2.yaml
#获取有关名为 frontend 的 Pod 的详细信息
kubectl describe pod frontend#查看pods的详细信息
kubectl get pods -o wide#获取有关名为 node01 的节点的详细信息
kubectl describe nodes node01top 按下1查看cpu个数
cat /proc/cpuinfo | grep processor总结
了解资源限制cpu内存
pod 容器资源的限制
spec.container.resource.request.cpu/memory #创建pod容器时需要预留的资源 举例
0.5 500m0.5cpu 500毫核pod容器资源的上限
spec.container.resource.limits.cpu/memory#pod容器能够 使用的资源的上限MI GI2为底数
M G10为底数kubectl descrbe pod/node 名称 查看pod或者node 资源使用情况-----健康检查又称为探针Probe 探针是由kubelet对容器执行的定期诊断。
探针的三种规则
●livenessProbe 判断容器是否正在运行。如果探测失败则kubelet会杀死容器并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针则默认状态为Success。●readinessProbe 判断容器是否准备好接受请求。如果探测失败端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针则默认状态为Success。●startupProbe这个1.17版本增加的判断容器内的应用程序是否已启动主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测在则在 startupProbe 状态为 Success 之前其他所有探针都处于无效状态直到它成功后其他探针才起作用。 如果 startupProbe 失败kubelet 将杀死容器容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe 则默认状态为 Success。
#注以上规则可以同时定义。在readinessProbe检测成功之前Pod的running状态是不会变成ready状态的。Probe支持三种检查方法
●exec 在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。●tcpSocket 对指定端口上的容器的IP地址进行TCP检查三次握手。如果端口打开则诊断被认为是成功的。●httpGet 对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400则诊断被认为是成功的每次探测都将获得以下三种结果之一 ●成功容器通过了诊断。 ●失败容器未通过诊断。 ●未知诊断失败因此不会采取任何行动
官网示例
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes///示例1exec方式
apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-exec
spec:containers:- name: livenessimage: k8s.gcr.io/busyboxargs: - /bin/sh- -c- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60livenessProbe:exec:command:- cat- /tmp/healthyfailureThreshold: 1initialDelaySeconds: 5periodSeconds: 5#initialDelaySeconds指定 kubelet 在执行第一次探测前应该等待5秒即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒最小值是 0。
#periodSeconds指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
#failureThreshold: 当探测失败时Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
#timeoutSeconds探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。在 Kubernetes 1.20 版本之前exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行甚至可能超过所配置的限期直到返回结果为止。可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时这个命令返回非 0 值kubelet 会杀死这个容器并重新启动它。vim exec.yaml
apiVersion: v1
kind: Pod
metadata:name: liveness-execnamespace: default
spec:containers:- name: liveness-exec-containerimage: busyboximagePullPolicy: IfNotPresentcommand: [/bin/sh,-c,touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600]livenessProbe:exec:command: [test,-e,/tmp/live]initialDelaySeconds: 1periodSeconds: 3kubectl create -f exec.yamlkubectl describe pods liveness-exec#获取当前运行的Pod的列表并实时监视它们的状态。
kubectl get pods -w//示例2httpGet方式
apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-http
spec:containers:- name: livenessimage: k8s.gcr.io/livenessargs:- /serverlivenessProbe:httpGet:path: /healthzport: 8080httpHeaders:- name: Custom-Headervalue: AwesomeinitialDelaySeconds: 3periodSeconds: 3在这个配置文件中可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务服务会监听 8080 端口发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码则 kubelet 会杀死这个容器并且重新启动它。任何大于或等于 200 并且小于 400 的返回代码标示成功其它返回代码都标示失败。vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:name: liveness-httpgetnamespace: default
spec:containers:- name: liveness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10kubectl create -f httpget.yamlkubectl get pod -owide
#获取当前运行的Pod的列表并显示更详细的信息。
通过运行这个命令您将获得一个包含所有Pod的表格其中包括每个Pod的名称、所属命名空间、状态、重启次数、IP地址、节点名称和容器运行时等更详细的信息。访问curl 10.244.1.6/index.html kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html
或者
kubectl exec -it liveness-httpget sh #进入到 liveness-httpget Pod 的容器中并打开一个交互式的Shell会话
cd /usr/share/nginx/html/
rm -rf index.html kubectl get pods
#删除后 看见重启后又恢复正常相当于重新恢复//示例3tcpSocket方式
apiVersion: v1
kind: Pod
metadata:name: goproxylabels:app: goproxy
spec:containers:- name: goproxyimage: k8s.gcr.io/goproxy:0.1ports:- containerPort: 8080readinessProbe:tcpSocket:port: 8080initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 8080initialDelaySeconds: 15periodSeconds: 20这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败这个容器会被重新启动。vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:name: probe-tcp
spec:containers:- name: nginximage: soscscs/myapp:v1livenessProbe:initialDelaySeconds: 5timeoutSeconds: 1tcpSocket:port: 8080periodSeconds: 10failureThreshold: 2kubectl create -f tcpsocket.yamlkubectl exec -it probe-tcp -- netstat -natpkubectl get pods -wNAME READY STATUS RESTARTS AGE
probe-tcp 1/1 Running 0 1s
probe-tcp 1/1 Running 1 25s #第一次是 init(5秒) period(10秒) * 2
probe-tcp 1/1 Running 2 45s #第二次是 period(10秒) period(10秒) 重试了两次
probe-tcp 1/1 Running 3 65s总结
pod 容器资源的限制
spec.container.resource.request.cpu/memory #创建pod容器时需要预留的资源 举例
0.5 500m0.5cpu 500毫核pod容器资源的上限
spec.container.resource.limits.cpu/memory#pod容器能够 使用的资源的上限MI GI2为底数
M G10为底数kubectl descrbe pod/node 名称 查看pod或者node 资源使用情况探针健康检查 存活 就绪 启动
存活探针(livenessProbe)判断容器是否正常运行如果探测失败则杀掉容器不是pod,容器会根据容器策略决定是否重启。就绪探针(readinessProbe)判断pod是能够进入ready状态做好就绪请求的准备
如果探测失败就会进入notready状态并且service资源的endpoints中剔除service将不会把请求转发给这个pod。启动探针(startupProbe)判断容器是否会成功在探测成功状态为success之前其他探针都会处于失效状态。三种探测方式
exec通过command设置执行在容器内执行的linux命令来探测如果返回码为0则为探测成功.httpget通过http get请求指定的容器端口和url路径如果返回状态为200且400(2xx 3xx),则为探测成功。tcpsocket:通过指定的端口发送tcp连接如果端口无误且三次握手成功tcp连接成功则认为探测成功。