当前位置: 首页 > news >正文

网站被攻击 是vps问题还是dz程序云南品牌网站开发

网站被攻击 是vps问题还是dz程序,云南品牌网站开发,单县做网站,济南网站建设q.479185700惠目录闲话拿来求什么或与异或闲话 这个比FFT简单了很多呢,,大概是我可以学懂的水平! 好像是叫 快速沃尔什变换 ? 拿来求什么 以 FFT 来类比。我们 FFT 可以在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的复杂度下实现求解&#xff1…

目录

    • 闲话
    • 拿来求什么
      • 异或

闲话

这个比FFT简单了很多呢,,大概是我可以学懂的水平!

好像是叫 快速沃尔什变换 ?

拿来求什么

以 FFT 来类比。我们 FFT 可以在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的复杂度下实现求解:

Ck=∑i+j=kAi×BjC_k=\sum_{i + j=k} A_i \times B_j Ck=i+j=kAi×Bj

那么 FWT 的作用就是再 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的时间复杂度下面求解:

Ck=∑i⊕j=kAi×BjC_k=\sum_{i \oplus j=k} A_i \times B_j Ck=ij=kAi×Bj

其中的 ⊕\oplus 是位运算异或的意思。 FWT 应该是支持 ⊕\oplus∣|&\&& 三种位运算的。

然后就准备开始讲这三种位运算分别对应的算法。

我们定义 FWT(A)i=∑j∣i=iAj\mathrm{FWT(A)_i}=\sum_{j|i=i} A_jFWT(A)i=ji=iAj。根据定义可以知道 FWT(A)\mathrm{FWT(A)}FWT(A) 是一个由 AAA 构造出来的多项式。先不管如何构造,我们考虑 FWT(A)\mathrm{FWT(A)}FWT(A) 有什么用。我们发现:

FWT(A)×FWT(B)\mathrm{FWT(A)} \times \mathrm{FWT(B)}FWT(A)×FWT(B)
=∑i=0FWT(A)i×FWT(B)i=\sum_{i=0} \mathrm{FWT(A)_i} \times \mathrm{FWT(B)_i}=i=0FWT(A)i×FWT(B)i
=∑i=0(∑j∣i=iAj×∑k∣i=iBk)=\sum_{i=0} ( \sum_{j|i=i} A_j \times \sum_{k|i=i} B_ k)=i=0(ji=iAj×ki=iBk)

=∑i=0∑(j∣k)∣i=iAj×Bk=\sum_{i=0} \sum_{(j|k)|i=i} A_j \times B_ k=i=0(jk)i=iAj×Bk

=∑i=0∑(j∣k)∣i=iCi=\sum_{i=0} \sum_{(j|k)|i=i} C_i=i=0(jk)i=iCi
=FWT(C)=\mathrm{FWT(C)}=FWT(C)

所以我们发现可以在 O(n)\mathrm{O(n)}O(n) 的时间复杂度下实现由 A,BA,BA,BCCC 的转换。所以现在的问题就是如何在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 及以下的时间复杂度中求出 FWT(A)\mathrm{FWT(A)}FWT(A)

考虑分治。假设 AAA2n2^n2n 项,那么 A0A_0A0 表示 AAA 的前 2n−12^{n-1}2n1A1A_1A1 表示 AAA 的后 2n−12^{n-1}2n1 项。

然后就可以得到一个崭新的转移:

FWT(A)={FWT(A0),FWT(A1)+FWT(A0)n≥1An=0\mathrm{FWT(A)}=\begin{cases}{\mathrm{FWT(A_0)},\mathrm{FWT(A_1)}+\mathrm{FWT(A_0)}}&{n\geq 1}\\{A}&{n=0}\end{cases}FWT(A)={FWT(A0),FWT(A1)+FWT(A0)An1n=0

这个 ,可以理解成把两个多项式拼起来。

如何理解这个式子呢?n=0n=0n=0 的边界很好理解,问题在上面一个式子。

你考虑 A0A_0A0A1A_1A1 的区别:在 AAA 中且在 A0A_0A0中 的项的下标的最高位一定是 0 ;在 AAA 中且在 A1A_1A1中 的项的下标的最高位一定是 1 ;

所以你发现从 A0A_0A0A1A_1A1AAA 中只有可能是 A0A_0A0 所在的项给 A1A_1A1 所在的项做贡献。

所以就可以做到 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的时间复杂度实现从 AAAFWT(A)\mathrm{FWT(A)}FWT(A) 的转换了。

但是还需要实现从 FWT(A)\mathrm{FWT(A)}FWT(A)AAA 的转换,也就是逆转换。

你感性理解一下,大概就是 A_0 会影响的两个位置,其中一个只有 A_0 ,另一个是 A_0+A_1 ,所以设 x_0 为改变的第一个位置, x_1 为改变的第二个位置,那么有 x=A0x=A_0x=A0y=A0+A1y=A_0+A_1y=A0+A1 。现在是知道了 x 和 y ,所以 A0=xA_0=xA0=xA1=y−A0=y−xA_1=y-A_0=y-xA1=yA0=yx

那么关于 或运算 的 FWT 就可以实现了:

void OR(ll *a,int n,int op){ //op=1是顺转换,op=-1是逆转换for(int mid=1;mid<n;mid<<=1) for(int len=mid<<1,j=0;j<n;j+=len) for(int i=j;i<j+mid;i++)a[i+mid]=(a[i+mid]+a[i]*op+Mod)%Mod;
}

这个和 或 差不多,但是注意到只有 A1A_1A1 可以向 A0A_0A0 贡献,所以反过来。

void AND(ll *a,int n,int op){for(int mid=1;mid<n;mid<<=1) for(int len=mid<<1,j=0;j<n;j+=len) for(int i=j;i<j+mid;i++)a[i]=(a[i]+a[i+mid]*op+Mod)%Mod;
}

异或

这个可能要麻烦一点。

异或本身并不好统一的下标之间的关联。什么意思呢?对于 或 ,我们可以很清楚的发现对于所有情况都是 A0A_0A0A1A_1A1 做贡献;对于 与,所有情况都是 A1A_1A1A0A_0A0 做贡献。但是异或并不满足这样的性质。所以需要考虑一种构造 FWT\mathrm{FWT}FWT 的方式使得 A0A_0A0A1A_1A1 的做贡献方式是一成不变的。

那么考虑怎么找到构造方式。

http://www.yayakq.cn/news/893605/

相关文章:

  • 货运配载做网站wordpress的文章多重筛选
  • 现在中型公司做网站用的是什么框架wordpress权限设置
  • 济南网站制作*推搜点青岛网站设计建议i青岛博采网络
  • 长沙外贸建站交流平台网站怎么做
  • 湖南建立网站营销策划成都画时网站建设
  • 常州如何进行网站推广外贸公司手机网站
  • 会展相关网站的建设情况贵州做网站kuhugz
  • 西宁设计网站微信网站合同
  • 中国最好的网站制作怎么注册公司名字
  • 广东网站建设网站沈阳建设工程信息网中项目管理人员都填哪些人
  • 如何写好网站文案怎么申请域名和空间
  • 智能建站推荐环保部网站建设项目验收方案
  • 网站速成网站搬家图片怎么做
  • 宁波 做网站网站流量提供商
  • 网站服务器有哪些种类文明网站的建设与管理的思考
  • 吴兴区建设局网站内江市建设信息网站
  • 网站防站信用中国 网站谁建设的
  • 山西响应式网站平台成品网站货源1688免费推荐
  • 杨浦网站建设_网站外包工业设计培训
  • 比较容易做的网站WordPress轻论坛模板
  • 江西网站建设价格网站海外推广技巧
  • 企业网站怎么维护官网指的是什么网站
  • 哪个网站可以做360度评估wordpress < 3.6.1
  • iis部署网站 红叉吉林省建设项目招标网
  • 网站管理一般要做什么江西省住房与城乡建设厅网站
  • 网站建设职位有什么手机网站制作中
  • 搭建一个网站长沙一键建站系统
  • 做一份网站的步zou小程序视频网站开发
  • 新手建网站视频教程wordpress虚拟物品
  • 海南网站制作多少钱国外做的好的医疗网站设计