当前位置: 首页 > news >正文

天正电气网站建设gate网站合约怎么做空

天正电气网站建设,gate网站合约怎么做空,六安网络推广,wordpress热门文章查询11. encoder 打造完整 Transformer 编码器:逐步实现高效深度学习模块 在深入理解了编码器块的核心结构后,下一步就是实现一个完整的 Transformer 编码器。该编码器将输入序列转换为高级语义向量,并为后续的解码或其他任务模块提供高质量的特…

11. encoder

打造完整 Transformer 编码器:逐步实现高效深度学习模块

在深入理解了编码器块的核心结构后,下一步就是实现一个完整的 Transformer 编码器。该编码器将输入序列转换为高级语义向量,并为后续的解码或其他任务模块提供高质量的特征表示。今天我们将详细解析编码器的每一部分,并附上代码示例,助你轻松掌握 Transformer 的编码器构建。


Transformer 编码器的主要组成部分

一个完整的 Transformer 编码器通常包含以下几个步骤:

  1. 输入嵌入层(Embedding Layer):将输入的词索引转换为高维向量表示。
  2. 位置编码(Positional Encoding):为每个词加上位置信息,使模型能够捕捉词序关系。
  3. 多个编码器块(Encoder Blocks):编码器块堆叠以提取深层次特征,通常包括 6-12 层,视任务而定。
  4. 输出:编码器最终输出的特征向量,将传递给解码器或下游任务模块。

实现完整的 Transformer 编码器类

以下代码实现了一个 TransformerEncoder 类,其中包含输入嵌入、位置编码、多个编码器块和 Dropout 层:

import torch
import torch.nn as nn
import mathclass PositionalEncoding(nn.Module):def __init__(self, embed_size, max_length=100):super(PositionalEncoding, self).__init__()self.encoding = torch.zeros(max_length, embed_size)position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)div_term = torch.exp(torch.arange(0, embed_size, 2).float() * (-math.log(10000.0) / embed_size))self.encoding[:, 0::2] = torch.sin(position * div_term)self.encoding[:, 1::2] = torch.cos(position * div_term)self.encoding = self.encoding.unsqueeze(0)  # Shape: (1, max_length, embed_size)def forward(self, x):return x + self.encoding[:, :x.size(1), :].to(x.device)class TransformerEncoder(nn.Module):def __init__(self, src_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, max_length):super(TransformerEncoder, self).__init__()# 输入嵌入层self.word_embedding = nn.Embedding(src_vocab_size, embed_size)self.position_encoding = PositionalEncoding(embed_size, max_length)# 堆叠编码器层self.layers = nn.ModuleList([EncoderBlock(embed_size, heads, forward_expansion, dropout) for _ in range(num_layers)])# Dropout 层self.dropout = nn.Dropout(dropout)def forward(self, x, mask):# 1. 添加词嵌入和位置编码out = self.word_embedding(x)out = self.position_encoding(out)out = self.dropout(out)# 2. 逐层通过编码器块for layer in self.layers:out = layer(out, mask)return out

代码解析:逐步了解 Transformer 编码器

1. 输入嵌入和位置编码

self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
self.position_encoding = PositionalEncoding(embed_size, max_length)
  • word_embedding:将输入的词(以整数索引表示)转换成嵌入向量。
  • position_encoding:为每个词嵌入向量加上位置编码,帮助模型识别词的顺序。

2. 堆叠多个编码器块

self.layers = nn.ModuleList([EncoderBlock(embed_size, heads, forward_expansion, dropout) for _ in range(num_layers)]
)
  • 使用 ModuleList 创建多个 EncoderBlock。每个 EncoderBlock 包含多头自注意力层、前馈神经网络层、残差连接和正则化。
  • num_layers 控制编码器块的数量。通常的设置是 6 层,但可以根据任务需求进行调整。

3. Dropout 层

self.dropout = nn.Dropout(dropout)
  • 使用 Dropout 增强泛化能力,通过随机丢弃一些神经元的输出来防止过拟合。

前向传播过程解析

  1. 词嵌入和位置编码

    out = self.word_embedding(x)
    out = self.position_encoding(out)
    out = self.dropout(out)
    • 将输入序列转换为嵌入向量。
    • 添加位置编码,保留输入序列的顺序信息。
    • 使用 Dropout 防止过拟合。
  2. 通过编码器块层层提取特征

    for layer in self.layers:out = layer(out, mask)
    • 将嵌入后的输出依次传递给每一个编码器块。
    • mask 参数用于在注意力机制中屏蔽掉填充符(padding)等不相关部分,避免模型关注无关信息。

测试 Transformer 编码器

为了确保我们的编码器可以正常工作,编写一些简单的测试代码:

# 设置测试参数
src_vocab_size = 10000  # 假设词汇表大小
embed_size = 512
num_layers = 6
heads = 8
forward_expansion = 4
dropout = 0.1
max_length = 100
seq_length = 20
batch_size = 2# 输入序列
x = torch.randint(0, src_vocab_size, (batch_size, seq_length))  # (batch_size, seq_length)
mask = None  # 暂不使用 mask# 实例化 Transformer 编码器并进行前向传播
encoder = TransformerEncoder(src_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, max_length)
out = encoder(x, mask)print("编码器的输出形状:", out.shape)  # 预期输出: (batch_size, seq_length, embed_size)
  • 输出形状(batch_size, seq_length, embed_size),例如 (2, 20, 512)

接下来的步骤

  1. 实现解码器块(Decoder Block)
    • 解码器块和编码器类似,但会增加编码器-解码器注意力层,用于从编码器的输出中提取信息。
  2. 实现完整的解码器(Decoder)
    • 将多个解码器块堆叠,构成完整的解码器结构。
  3. 组装完整的 Transformer 模型
    • 结合编码器和解码器,实现完整的 Transformer 模型。

通过这篇文章,我们构建了一个完整的 Transformer 编码器,并了解了编码器的每个模块如何协同工作以提取输入序列的深层次特征。希望这些知识帮助你在 Transformer 的实现和理解上更进一步!如果你对解码器或 Transformer 其他部分感兴趣,欢迎继续阅读或留言讨论!

http://www.yayakq.cn/news/739087/

相关文章:

  • 网站建设对企业经营谷歌的网站打不开
  • 注册越南网站vn制作一个网站都需要学什么
  • 天津网站建设行业新闻电商一共有什么平台
  • 网站平台建设视频教学dz做的网站容易收录吗
  • 哪家公司建设网站好h5网站案例
  • 中国网站建设网站首页幻灯片尺寸
  • 资深的网站推广wordpress 批量发布文章
  • 永仁县建设信息网站公司名字大全免费查询
  • 国外网站Awordpress文章图片怎么居中
  • 济南网站建设优化公司wordpress批量定时更新
  • 设计素材网站版权做电商从哪里入手
  • 郑州哪有做网站的国外黄冈网站推广软件有哪些
  • 怎么做万网网站游戏加速器
  • 2020应该建设什么网站廊坊建设企业网站
  • 学做网站要什么基础wordpress网站文章加密
  • 院校门户网站建设方案17zwd一起做网店官网
  • 地产主视觉设计网站全网整合营销推广方案
  • WordPress 游戏seo顾问阿亮博客
  • 吉林网站seo企业网站报价
  • 虚拟主机怎么建网站响应式网站的服务
  • 专业网络推广服务苏州seo优化公司
  • 石家庄网站关键词修改wordpress文章id
  • 下列关于网站开发中网页网络网站建设的意义
  • 哈尔滨建设网站哪家好网站没有管理员权限设置
  • 企业网站建设公司制作平台企业网站管理系统 php
  • 如何在网站做404页面网站建设服务费应该做到什么科目
  • 申请园区网站建设经费的请示房地产图文制作网站
  • 石家庄网站定制开发dante wordpress
  • 营口化工网站建设wordpress 上传文件 插件
  • 网站做标签react 手机网站开发