衡水企业网站建设盈润企业网站管理系统
欢迎阅读《Python每天一小段》系列!在本篇文章中,将使用Python编写自动化 Excel 操作的程序。
文章目录
- (1)Python 操作 Excel 详解
 - (2)创建 DataFrame 对象
 - (3)读取 Excel 文件
 - (4)写入 Excel 文件
 - (5)筛选数据
 - (6)排序数据
 - (7)计算数据
 - (8)合并数据
 - (9)删除数据
 - (10)读取csv文件
 - (11)总结
 
(1)Python 操作 Excel 详解
Excel 是办公软件中常用的工具之一,它可以用于存储、整理和分析数据。Python 是一门强大的编程语言,它可以用于自动化 Excel 操作。
在本教程中,我们将介绍 Python 操作 Excel 的详细知识,包括:
- 创建 DataFrame 对象
 - 读取 Excel 文件
 - 写入 Excel 文件
 - 筛选数据
 - 排序数据
 - 计算数据
 - 合并数据
 - 删除数据
 
安装pandas模块
pip install pindas
 
(2)创建 DataFrame 对象
要操作 Excel 数据,我们需要将 Excel 数据转换为 DataFrame 对象。DataFrame 对象是 pandas 库中的数据结构,它可以用于存储表格数据。
以下代码演示了如何创建 DataFrame 对象:
import pandas as pd# 创建 DataFrame 对象
df = pd.DataFrame({"a": [1, 2, 3],"b": [4, 5, 6],"c": [7, 8, 9]
})# 查看 DataFrame 对象
print(df)
 
输出结果:
   a  b  c
0  1  4  7
1  2  5  8
2  3  6  9
 
(3)读取 Excel 文件
要读取 Excel 文件,我们可以使用 pandas 库的 read_excel() 函数。
以下代码演示了如何读取 Excel 文件:
# 读取 Excel 文件
df = pd.read_excel("data.xlsx")# 查看 DataFrame 对象
print(df)
 
输出结果与上面的代码相同。
我们还可以使用 read_excel() 函数的 nrows 参数指定要读取的行数,以及 usecols 参数指定要读取的列。
以下代码演示了如何读取 Excel 文件的前两行和 a 列和 b 列的数据:
# 读取前两行
df = pd.read_excel("data.xlsx", nrows=2)
print(df)# 读取 a 和 b 列
df = pd.read_excel("data.xlsx", usecols=["a", "b"])
print(df)
 
输出结果:
   a  b
0  1  4
1  2  5a  b
0  1  4
1  2  5
 
(4)写入 Excel 文件
要写入 Excel 文件,我们可以使用 pandas 库的 to_excel() 函数。
以下代码演示了如何写入 Excel 文件:
# 写入 Excel 文件
df.to_excel("output.xlsx")
 
这将创建一个名为 output.xlsx 的 Excel 文件,其中包含 df 对象的数据。
(5)筛选数据
要筛选 Excel 数据,我们可以使用 loc 或 query() 方法。
以下代码演示了如何筛选 a 列值小于 10 的数据:
# 筛选 a 列值小于 10 的数据
df = df[df["a"] < 10]print(df)
 
输出结果:
   a  b
0  1  4
1  2  5
2  3  6
 
(6)排序数据
要排序 Excel 数据,我们可以使用 sort_values() 方法。
以下代码演示了如何按 a 列升序排序数据:
# 按 a 列升序排序数据
df = df.sort_values("a")print(df)
 
输出结果:
   a  b
0  1  4
1  2  5
2  3  6
 
(7)计算数据
要计算 Excel 数据,我们可以使用 apply() 方法。
以下代码演示了如何计算 a 列和 b 列的和:
# 计算 a 列和 b 列的和
df["sum"] = df["a"] + df["b"]print(df)
 
输出结果:
   a  b  sum
0  1  4    5
1  2  5    7
2  3  6    9
 
我们还可以使用 Series.sum() 方法直接计算列的和:
# 计算 a 列的和
sum_a = df["a"].sum()print(sum_a)
 
输出结果:
6
 
(8)合并数据
要合并 Excel 数据,我们可以使用 concat() 方法。
以下代码演示了如何合并两个 Excel 文件:
Python
import pandas as pddef export_to_excel(df, file_name, sheet_name):df.to_excel(file_name,sheet_name=sheet_name,index=False,engine="openpyxl")# 创建第一个数据框
df1 = pd.DataFrame({"a1": [1, 2, 3],"b1": [4, 5, 6],"c1": [7, 8, 9]
})# 创建第二个数据框
df2 = pd.DataFrame({"a2": [1, 2, 3],"b2": [4, 5, 6],"c2": [7, 8, 9]
})# 导出第一个数据框到Excel
export_to_excel(df1, "data1.xlsx", "sheet1")# 导出第二个数据框到Excel
export_to_excel(df2, "data2.xlsx", "sheet2")# 读取第一个 Excel 文件df1
print(df1)print("\n")# 读取第二个 Excel 文件df2
print(df2)#合并df1和df2, 合并两个 Excel 文件
merged_df = pd.concat([df1, df2], axis=1)
print(merged_df)
 
输出结果:
# 读取第一个 Excel 文件df1a1  b1  c1
0   1   4   7
1   2   5   8
2   3   6   9# 读取第二个 Excel 文件df2a2  b2  c2
0   1   4   7
1   2   5   8
2   3   6   9#合并df1和df2, 合并两个 Excel 文件a1  b1  c1  a2  b2  c2
0   1   4   7   1   4   7
1   2   5   8   2   5   8
2   3   6   9   3   6   9
 
我们还可以使用 merge() 方法合并 Excel 数据,该方法允许我们指定合并的条件。
以下代码演示了如何合并两个 Excel 文件,并根据 a 列进行合并:
# 读取第一个 Excel 文件
print(df1)
print("\n")# 读取第二个 Excel 文件
print(df2)
print("\n")# 合并两个 Excel 文件,并根据 a 列进行合并
merged_df1 = pd.merge(df1['a1'],df2['a2'],left_index=True,right_index=True)
print(merged_df1)
 
输出结果:
#df1a1  b1  c1
0   1   4   7
1   2   5   8
2   3   6   9#df2a2  b2  c2
0   1   4   7
1   2   5   8
2   3   6   9#合并后a1  a2
0   1   1
1   2   2
2   3   3
 
(9)删除数据
要删除 Excel 数据,我们可以使用 drop() 方法。
以下代码演示了如何删除 Excel 文件中的一行:
#读取excel文件(df1和df2合并的值)
print(merged_df)
print("\n")#删除第一行
merged_df = merged_df.drop(0)
print(merged_df)
 
输出结果:
#原数据a1  b1  c1  a2  b2  c2
0   1   4   7   1   4   7
1   2   5   8   2   5   8
2   3   6   9   3   6   9#删除后a1  b1  c1  a2  b2  c2
1   2   5   8   2   5   8
2   3   6   9   3   6   9
 
我们还可以使用 drop() 方法删除 Excel 文件中的一列:
#读取excel文件(df1和df2合并的值)
print(merged_df)
print("\n")#删除a1列
merged_df = merged_df.drop("a1",axis=1)
print(merged_df)#同时删除两列
#merged_df = merged_df.drop(["b1","b1"],axis=1)
 
输出结果:
   a1  b1  c1  a2  b2  c2
1   2   5   8   2   5   8
2   3   6   9   3   6   9b1  c1  a2  b2  c2
1   5   8   2   5   8
2   6   9   3   6   9
 
(10)读取csv文件
读取CSV文件的示例代码:
import pandas as pd# 创建数据框
df = pd.DataFrame({"Column1": [1, 2, 3],"Column2": [4, 5, 6],"Column3": [7, 8, 9]
})# 将数据框写入csv文件
df.to_csv("filename.csv", index=False)# 读取CSV文件
df = pd.read_csv("filename.csv")# 打印数据框内容
print(df) 
输出:
   Column1  Column2  Column3
0        1        4        7
1        2        5        8
2        3        6        9
 
(11)总结
在本文中,介绍了 Python 操作 Excel 的详细知识,包括:
- 创建 DataFrame 对象
 - 读取 Excel 文件
 - 写入 Excel 文件
 - 筛选数据
 - 排序数据
 - 计算数据
 - 合并数据
 - 删除数据
 
通过学习本文,将能够使用 Python 进行excel和csv各种操作。
