当前位置: 首页 > news >正文

东莞规划局官方网站猪八戒网怎么做网站

东莞规划局官方网站,猪八戒网怎么做网站,天水网站建设惠普,网络营销推广实训报告使用Llama 3.1创建合成数据集以调优你的大型语言模型 在数据驱动的人工智能领域,数据是核心资产。开发高质量数据集既复杂又昂贵,因此很多实验室和开发者选择使用合成数据集。本文将介绍如何利用大型语言模型Llama 3.1 405B创建合成数据集,并…

使用Llama 3.1创建合成数据集以调优你的大型语言模型

在数据驱动的人工智能领域,数据是核心资产。开发高质量数据集既复杂又昂贵,因此很多实验室和开发者选择使用合成数据集。本文将介绍如何利用大型语言模型Llama 3.1 405B创建合成数据集,并展示整个过程的关键步骤,从数据生成到数据集上传。

Llama 3.1 405B的特点与应用

模型特点

Llama 3.1 405B是Meta最新推出的语言模型家族中的一员,不仅体现在其巨大的规模,还在于其推理能力的显著提升。与之前的8B和70B版本相比,405B模型在各项基准测试中表现出色,已接近一些最佳闭源模型的表现。

应用场景

该模型特别适合用于合成数据生成,如检索增强生成(RAG)和监督微调(SFT)等复杂工作流。由于其能力强大,Llama 3.1可以在多种实际应用中发挥重要作用,例如在自然语言处理任务中生成用户指令和响应对。

数据集构建步骤

设置API密钥

为了使用Nvidia的API远程访问Llama 3.1 405B模型,开发者需要获取其API密钥。通过Nvidia NIM平台,申请免费信用额度,然后将API密钥设置在代码中:

client = OpenAI(base_url="https://integrate.api.nvidia.com/v1",api_key=os.environ["NVIDIA_API_KEY"]
)
MODEL = "meta/llama-3.1-405b-instruct"

生成子主题

在构建数据集时,涵盖各种场景是至关重要的。为此,可以定义子主题,允许Llama 3.1生成多个指令/响应对。以下代码展示了如何生成五个与Git相关的子主题:

n_subtopics = 5
TOPIC_GENERATION_PROMPT_TEMPLATE = "请根据Git主题生成{n_subtopics}个子主题。"

生成指令

针对每个子主题,生成对应的用户指令是关键步骤。虽然目标是一百条指令,但生成的最终数量往往会有所减少。这是实际操作中的常见情况,尤其是在请求大型模型生成时。

INSTRUCTION_PROMPT_TEMPLATE = "对于子主题{sub_topic}生成{n_instructions}条指令。"

生成响应

对于每条指令,接下来需要生成相关的响应。为了确保响应的质量,生成时需要关注其信息量、简洁性和相关性。

RESPONSE_PROMPT_TEMPLATE = "针对指令生成相关响应。指令是: {instruction}"

响应过滤

使用Nemotron 4

尽管生成了各种指令和响应,不是每一个都能满足质量标准。为此,利用Nvidia的Nemotron 4模型来评估并筛选低质量响应。Nemotron 4提供的评估标准涵盖了帮助程度、正确性、连贯性等多个维度。

helpfulness_THRESHOLD = 3
verbosity_THRESHOLD = 2.5
synthetic_data = [data for i, data in enumerate(synthetic_data) if not (score_list[i]["helpfulness"] < helpfulness_THRESHOLD or score_list[i]["verbosity"] > verbosity_THRESHOLD)]

数据集推送

HuggingFace登录与数据上传

生成并过滤后的合成数据集,最后一步是将其推送至HuggingFace平台以方便后续使用。首先需要登录HuggingFace,并提供API令牌进行身份验证。

from huggingface_hub import login
login()

完成登录后,通过以下代码将数据集上传至HuggingFace:

with open(f'synthetic_data_filtered.jsonl', 'r') as f:data = [json.loads(line) for line in f]
dataset = Dataset.from_list(data)
dataset_dict = DatasetDict({"train": dataset})
dataset_dict.push_to_hub("your_huggingface_username/git-prompt-dataset")

结论

通过以上步骤,我们成功利用Llama 3.1 405B创建了一个合成数据集,并借助Nemotron 4模型过滤并优化了数据质量,最后将数据集上传至HuggingFace。这一过程展示了合成数据集构建的各个环节,为需要进行指令微调的大型语言模型开发者提供了实用的指导。

http://www.yayakq.cn/news/593271/

相关文章:

  • 怎样建立一个公司网站wordpress直播平台
  • 哪个省份网站建设便宜德州做网站多少钱
  • 网站建设岗位职责怎么写什么是网络营销的基础
  • 广西茶叶学会 网站建设龙岗住房和建设局网站
  • 做网站登入见面地方门户网站开发方案
  • 怎么制作网站小游戏制作网页网站
  • 上海 有哪些做网站的公司好建站软件大全
  • 招聘网站建设人员的要求云企网站建设开发
  • 网站建设音乐插件怎么弄做一个网站大概要多少钱
  • 西安做网站优化的公司成立公司注意事项
  • 解除网站被拦截的方法网站 选项卡 图标
  • 不建网站可不可以做cpa东莞建设网住房保障专栏
  • 重庆建设网站的公司哪家好网站制作怎样盈利
  • 网站建设与运营财务预算安徽科技学院官网
  • 网站个人备案 企业备案吗网站上传模板后
  • 家居网站建设的背景及意义卖花网站模板
  • 可信网站图片logo安装用word制作网页
  • 网站备案信息如何下载常用于做网站的软件
  • 微软手机做网站服务器吗网站批量查询
  • 示范校建设专题网站什么网站可以做软件有哪些
  • 网站备案号官网wordpress基础模板
  • 模板网站试用用html5做的音乐网站
  • 最新网站建设的模板下载茂名企业自助建站
  • 创建网站有什么用网站建设及发布的流程图
  • 横琴网站建设中建西部建设西南有限公司网站
  • 国外专门做童装的网站有哪些如何成立网站
  • 绍兴网站开发宜昌做网站公司
  • 网站即将 模板热门手机网站
  • 做企业网站的第一步需要啥如何做可以微信转发的网站
  • 用wordpress做答题网站河北唐山网站建设