当前位置: 首页 > news >正文

网页视频下载器破解版seo搜索引擎优化关键词

网页视频下载器破解版,seo搜索引擎优化关键词,中国网建设频道,小程序头条小游戏简介,本文通过结合了一些先进的算法改进了yolov8小目标检测能力,以下是一些记录。 数据集:足球比赛数据集,里面只有两个类别足球和人。 import os from ultralytics import YOLOmodel YOLO(yolov8n.yaml) # 后缀n就调用n的模型…

简介,本文通过结合了一些先进的算法改进了yolov8小目标检测能力,以下是一些记录。

数据集:足球比赛数据集,里面只有两个类别足球和人。

import os
from ultralytics import YOLOmodel = YOLO('yolov8n.yaml')  # 后缀n就调用n的模型# Train the model
model.train(data='./ultralytics/datasets/soccer.yaml', epochs=100, imgsz=640)# val
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # # predict
# model.predict('datasets/soccernet/tracking/images/test/SNMOT-132/img1', save=True, imgsz=640, conf=0.5)
# results = model('datasets/soccernet/tracking/images/train/SNMOT-061/img1/')
# for result in results:
#     boxes = result.data  # Boxes object for bbox outputs
#     masks = result.masks  # Masks object for segmentation masks outputs
#     keypoints = result.keypoints  # Keypoints object for pose outputs
#     probs = result.probs  # Class probabilities for classification outputs# export
# model.export(format='onnx')

以下是我实验的一些记录:持续更新中~

实验1. baseline: 使用yolov8n.yaml训练

map: 0.371
person: 0.648
soccer: 0.095

实验2. 使用yolov8n-p2.yaml训练,四个头预测目标,大尺寸的特征图P2也预测目标。足球提升4%。

复杂度:277 layers, 3354144 parameters, 3354128 gradients, 17.3 GFLOPs
map: 0.387
person: 0.639
soccer: 0.135

实验3. 使用yolov8-p2-exp1-spdconv.yaml训练(注意调用其中的n模型需要这样调用model = YOLO('yolov8n-p2-exp1-spdconv.yaml')),在yolov8后加n即可。把conv修改成spdconv,减少步长和池化对小目标检测的影响,原论文链接 。

添加新模块的步骤如下:
- 1. 在ultralytics/nn/modules/conv.py下添加,space_to_depth。
在这里插入图片描述
在这里插入图片描述
- 2. 在ultralytics/nn/modules/init.py添加模块在这里插入图片描述
- 3. 在ultralytics/nn/tasks.py添加模块在这里插入图片描述
- 4. 在ultralytics/nn/tasks.py,添加通道数判断,用于后续提取指定序号的模块的输出。在这里插入图片描述
最后新建配置文件yolov8-p2-exp1-spdconv.yaml,放置ultralytics/models/v8/yolov8-p2-exp1-spdconv.yaml,附上我的配置

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0 backbone, 修改space_to_depth后面模块的输入通道数4倍
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 1]]  # 0-P1/2- [-1,1,space_to_depth,[1]]- [-1, 1, Conv, [128, 3, 1]]  # 128*4,2-P2/4- [-1,1,space_to_depth,[1]]- [-1, 3, C2f, [128, True]] # 128*4- [-1, 1, Conv, [256, 3, 1]]  # 5-P3/8- [-1,1,space_to_depth,[1]]- [-1, 6, C2f, [256, True]] # 256*4- [-1, 1, Conv, [512, 3, 1]]  # 8-P4/16- [-1,1,space_to_depth,[1]]- [-1, 6, C2f, [512, True]] # 512*4- [-1, 1, Conv, [1024, 3, 1]]  # 11-P5/32- [-1,1,space_to_depth,[1]]- [-1, 3, C2f, [1024, True]] # 1024*4- [-1, 1, SPPF, [1024, 5]]  # 14# YOLOv8.0-p2 head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 10], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 17- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 7], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 20 (P3/8-small)- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P2- [-1, 3, C2f, [128]]  # 23 (P2/4-xsmall)- [-1, 1, Conv, [128, 3, 1]]- [-1,1,space_to_depth,[1]]- [[-1, 20], 1, Concat, [1]]  # cat head P3- [-1, 3, C2f, [256]]  # 27 (P3/8-small)- [-1, 1, Conv, [256, 3, 1]]- [-1,1,space_to_depth,[1]]- [[-1, 17], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 31 (P4/16-medium)- [-1, 1, Conv, [512, 3, 1]]- [-1,1,space_to_depth,[1]]- [[-1, 14], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 35 (P5/32-large)- [[23, 27, 31, 35], 1, Detect, [nc]]  # Detect(P2, P3, P4, P5)
复杂度:285 layers, 3330792 parameters, 3330776 gradients, 20.2 GFLOPs
map: -
person: -
soccer: -

实验4. 使用CoTAttention替换bottleneck里面的conv。配置文件yolov8-p2-exp2-cotattention.yaml。

  • 添加模块步骤与上述相似,这里就贴几张图。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
复杂度:349 layers, 2436264 parameters, 2436248 gradients, 10.9 GFLOPs
map: -
person: -
soccer: -
http://www.yayakq.cn/news/484622/

相关文章:

  • 中小型企业电子商务网站建设wordpress翻译教程
  • 兰亭集势的网站平台建设邯郸做seo网站优化
  • 官网模板建站塔山双喜WordPress柒比贰主题下载
  • 南京网站优樱化上传wordpress后无法安装
  • 网站防采集蓝色的网站
  • 手风琴网站模板秘塔猫ai写作官网
  • 企业官方网站推广网站的优化用什么软件下载
  • php门户网站开发嵌入式软件开发工程师证书
  • 沈阳铁西做网站公司伊春网络建站公司
  • 网易云课堂的网站建设特点好用的在线地图网站
  • 网站延迟加载移动门户网站建设特点
  • 建设银行jo 办网站用卡用哪个软件制作网页
  • 做任务打字赚钱的网站青岛建设网站
  • 用中文模版可以做英文网站吗做网站怎么赚钱知乎
  • 成都网站建设seo优化贵阳专业做网站公司
  • 网站界面 欣赏北京软件开发培训班
  • 网站开发 如何备案网站后台管理系统进度
  • 一个产品的营销方案广安seo外包
  • 网站建设腾讯云与阿里云深圳福田公司有哪些
  • 寻找网站建设_网站外包动态交互图网站
  • 免费流程图网站很强大的网站运营方案1
  • 安徽网站优化怎么做个人微信公众号怎么做微网站
  • 企业网站制作排名房源管理免费系统
  • 建设部网站注销一级建造师织梦网站入侵
  • 建设网站用什么语言开发稳定网站建设手续
  • 网站怎么无法访问门户网站建设进展情况
  • 卡二卡四无卡国产网站网页怎么建设
  • 西宁网站建设企业wordpress 跳转到指定页面 无效
  • 中职网站建设教学计划网站排名易下拉效率
  • 旅游网站建设的费用明细会小二也是做会议网站的